Advanced Search
MyIDEAS: Login

A Semiparametric Panel Model for Unbalanced Data with Application to Climate Change in the United Kingdom

Contents:

Author Info

  • Atak, Alev
  • Linton, Oliver B.
  • Xiao, Zhijie

Abstract

This paper is concerned with developing a semiparametric panel model to explain the trend in UK temperatures and other weather outcomes over the last century. We work with the monthly averaged maximum and minimum temperatures observed at the twenty six Meteorological Office stations. The data is an unbalanced panel. We allow the trend to evolve in a nonparametric way so that we obtain a fuller picture of the evolution of common temperature in the medium timescale. Profile likelihood estimators (PLE) are proposed and their statistical properties are studied. The proposed PLE has improved asymptotic property comparing the the sequential two-step estimators. Finally, forecasting based on the proposed model is studied.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/22079/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 22079.

as in new window
Length:
Date of creation: 15 Mar 2010
Date of revision:
Handle: RePEc:pra:mprapa:22079

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Global warming; Kernel estimation; Semiparametric; Trend analysis;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
  2. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-28, May.
  3. Lee, Lung-fei & Rosenzweig, Mark R. & Pitt, Mark M., 1997. "The effects of improved nutrition, sanitation, and water quality on child health in high-mortality populations," Journal of Econometrics, Elsevier, vol. 77(1), pages 209-235, March.
  4. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
  5. Jiti Gao & Kim Hawthorne, 2006. "Semiparametric estimation and testing of the trend of temperature series," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 332-355, 07.
  6. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
  7. Pateiro-López, Beatriz & González-Manteiga, Wenceslao, 2006. "Multivariate partially linear models," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1543-1549, August.
  8. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
  9. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
  10. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-83, July.
  11. Miguel A. Delgado & Thanasis Stengos, 1990. "Semiparametric Specification Testing," Working Papers 778, Queen's University, Department of Economics.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "Semiparametric trending panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
  2. Yonghui Zhang & Liangjun Su & Peter C. B. Phillips, 2012. "Testing for common trends in semi‐parametric panel data models with fixed effects," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 56-100, 02.
  3. Jia Chen & Degui Li & Jiti Gao, 2013. "Non- and Semi-Parametric Panel Data Models: A Selective Review," Monash Econometrics and Business Statistics Working Papers 18/13, Monash University, Department of Econometrics and Business Statistics.
  4. Lena Korber & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers CWP02/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22079. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.