Advanced Search
MyIDEAS: Login

Tolerance, Cooperation, and Equilibrium Restoration in Repeated Games

Contents:

Author Info

  • Balanquit, Romeo
Registered author(s):

    Abstract

    This study shows that in a two-player infinitely repeated game where one is patient and the other is impatient, Pareto-superior subgame perfect equilibrium can be achieved. An impatient player in this paper is depicted as someone who can truly destroy the possibility of attaining any feasible and individually rational outcome that is supported in equilibrium in repeated games, as asserted by the Folk Theorem. In this scenario, the main ingredient for the restoration of equilibrium is to introduce the notion of tolerant trigger strategy. Consequently, the use of the typical trigger strategy is abandoned since it ceases to be efficient as it only brings automatically the game to its punishment path, therefore eliminating the possibility of extracting other feasible equilibria. I provide a simple characterization of perfect equilibrium payoffs under this scenario and show that cooperative outcome can be approximated.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://mpra.ub.uni-muenchen.de/21877/
    File Function: original version
    Download Restriction: no

    File URL: http://mpra.ub.uni-muenchen.de/28990/
    File Function: revised version
    Download Restriction: no

    Bibliographic Info

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 21877.

    as in new window
    Length:
    Date of creation: 25 Mar 2010
    Date of revision:
    Handle: RePEc:pra:mprapa:21877

    Contact details of provider:
    Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page: http://mpra.ub.uni-muenchen.de
    More information through EDIRC

    Related research

    Keywords: infinitely-repeated games; tolerant trigger strategy;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Drew Fudenberg & David Kreps & Eric Maskin, 1988. "Repeated Games with Long-Run and Short-Run Players," Working papers 474, Massachusetts Institute of Technology (MIT), Department of Economics.
    2. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-54, May.
    3. Ehud Lehrer & Ady Pauzner, 1999. "Repeated Games with Differential Time Preferences," Econometrica, Econometric Society, vol. 67(2), pages 393-412, March.
    4. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-22, July.
    5. Friedman, James W, 1971. "A Non-cooperative Equilibrium for Supergames," Review of Economic Studies, Wiley Blackwell, vol. 38(113), pages 1-12, January.
    6. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-96, March.
    7. Rubinstein, Ariel, 1979. "Equilibrium in supergames with the overtaking criterion," Journal of Economic Theory, Elsevier, vol. 21(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21877. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.