IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/110554.html
   My bibliography  Save this paper

The impact of variable renewable energy penetration on wholesale electricity prices in Japan

Author

Listed:
  • Sakaguchi, Makishi
  • Fujii, Hidemichi

Abstract

The merit order effect (MOE), which renewable energy sources can decrease wholesale electricity prices, plays an important role in establishing low-carbon societies. After the liberalization of the electricity market, the trade volume of the Japan Electric Power Exchange (JEPX) day-ahead spot market drastically increased between 2016 and 2019; however, price spikes still occur often. Ordinary least squares and quantile regression analyses were applied in this study to investigate how wind and solar photovoltaics (PV) energy generation affect the JEPX day-ahead spot price by time, price range, and area, and we concluded that the MOE of wind increased between 2016 and 2019 while that of PV decreased during this time. In regard to the high price ranges, although wind generation is not significant in terms of reducing price spikes, PV had this effect in 2016 and 2017 but not during the other years covered. The study area was divided into four regions, and each area followed trends that were different from those of the national analysis. Overall, the key finding of our study is that wind power has more potential to reduce electricity prices than PV.

Suggested Citation

  • Sakaguchi, Makishi & Fujii, Hidemichi, 2021. "The impact of variable renewable energy penetration on wholesale electricity prices in Japan," MPRA Paper 110554, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:110554
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/110554/1/MPRA_paper_110554.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    2. Jun Maekawa & Bui Hien Hai & Sarana Shinkuma & Koji Shimada, 2018. "The Effect of Renewable Energy Generation on the Electric Power Spot Price of the Japan Electric Power Exchange," Energies, MDPI, vol. 11(9), pages 1-16, August.
    3. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    4. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.
    5. Alexander Ryota Keeley, Kenichi Matsumoto, Kenta Tanaka, Yogi Sugiawan, and Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    6. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    7. Sirin, Selahattin Murat & Yilmaz, Berna N., 2020. "Variable renewable energy technologies in the Turkish electricity market: Quantile regression analysis of the merit-order effect," Energy Policy, Elsevier, vol. 144(C).
    8. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    9. Quint, Dov & Dahlke, Steve, 2019. "The impact of wind generation on wholesale electricity market prices in the midcontinent independent system operator energy market: An empirical investigation," Energy, Elsevier, vol. 169(C), pages 456-466.
    10. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paige Weber & Matt Woerman, 2022. "Intermittency or Uncertainty? Impacts of Renewable Energy in Electricity Markets," CESifo Working Paper Series 9902, CESifo.
    2. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Rassi, Samin & Kanamura, Takashi, 2023. "Electricity price spike formation and LNG prices effect under gross bidding scheme in JEPX," Energy Policy, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    2. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    3. Tselika, Kyriaki, 2022. "The impact of variable renewables on the distribution of hourly electricity prices and their variability: A panel approach," Energy Economics, Elsevier, vol. 113(C).
    4. Mahmood Hosseini Imani & Ettore Bompard & Pietro Colella & Tao Huang, 2021. "Impact of Wind and Solar Generation on the Italian Zonal Electricity Price," Energies, MDPI, vol. 14(18), pages 1-26, September.
    5. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    6. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    8. Mosquera-López, Stephanía & Nursimulu, Anjali, 2019. "Drivers of electricity price dynamics: Comparative analysis of spot and futures markets," Energy Policy, Elsevier, vol. 126(C), pages 76-87.
    9. Nibedita, Barsha & Irfan, Mohd, 2022. "Analyzing the asymmetric impacts of renewables on wholesale electricity price: Empirical evidence from the Indian electricity market," Renewable Energy, Elsevier, vol. 194(C), pages 538-551.
    10. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    11. Prata, Ricardo & Carvalho, Pedro M.S. & Azevedo, Inês L., 2018. "Distributional costs of wind energy production in Portugal under the liberalized Iberian market regime," Energy Policy, Elsevier, vol. 113(C), pages 500-512.
    12. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    13. Abban, Abdul Rashid & Hasan, Mohammad Z., 2021. "Solar energy penetration and volatility transmission to electricity markets—An Australian perspective," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 434-449.
    14. Gonçalves, Ricardo & Menezes, Flávio, 2022. "The price impacts of the exit of the Hazelwood coal power plant," Energy Economics, Elsevier, vol. 116(C).
    15. Sánchez de la Nieta, A.A. & Contreras, J., 2020. "Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case," Energy Economics, Elsevier, vol. 90(C).
    16. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    17. Maniatis, Georgios I. & Milonas, Nikolaos T., 2022. "The impact of wind and solar power generation on the level and volatility of wholesale electricity prices in Greece," Energy Policy, Elsevier, vol. 170(C).
    18. Laurent Pagnier & Philippe Jacquod, 2017. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Papers 1706.00330, arXiv.org, revised Jun 2018.
    19. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    20. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.

    More about this item

    Keywords

    merit order effect; wholesale electricity market; renewable energy;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:110554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.