Advanced Search
MyIDEAS: Login to save this paper or follow this series

Multivariate High-Frequency-Based Volatility (HEAVY) Models

Contents:

Author Info

  • Diaa Noureldin

    ()
    (Dept of Economics and Oxford-Man Institute of Quantitative Finance, University of Oxford)

  • Neil Shephard

    ()
    (Dept of Economics and Oxford-Man Institute of Quantitative Finance, University of Oxford.)

  • Kevin Sheppard

    ()
    (Dept of Economics and Oxford-Man Institute of Quantitative Finance, University of Oxford.)

Abstract

This paper introduces a new class of multivariate volatility models that utilizes high-frequency data. We discuss the models dynamics and highlight their di¤erences from multivariate GARCH models. We also discuss their covariance targeting specification and provide closed-form formulas for multi-step forecasts. Estimation and inference strategies are outlined. Empirical results suggest that the HEAVY model outperforms the multivariate GARCH model out-of-sample, with the gains being particularly significant at short forecast horizons. Forecast gains are ob- tained for both forecast variances and correlations.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.nuffield.ox.ac.uk/economics/papers/2011/w1/Heavy_18022011.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Economics Group, Nuffield College, University of Oxford in its series Economics Papers with number 2011-W01.

as in new window
Length: 41 pages
Date of creation: 18 Feb 2011
Date of revision:
Handle: RePEc:nuf:econwp:1101

Contact details of provider:
Web page: http://www.nuff.ox.ac.uk/economics/

Related research

Keywords: HEAVY model; GARCH; multivariate volatility; realized covariance; covariance targeting; multi-step forecasting; Wishart distribution.;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
  2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  3. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
  4. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(1), pages 29-56, Winter.
  5. Valeri Voev, 2007. "Dynamic Modeling of Large Dimensional Covariance Matrices," CoFE Discussion Paper 07-01, Center of Finance and Econometrics, University of Konstanz.
  6. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
  7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
  8. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
  9. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  10. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2012. "Realized Beta GARCH: Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," Economics Working Papers ECO2012/28, European University Institute.
  11. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, . "Multivariate GARCH models: a survey," CORE Discussion Papers RP -1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  13. Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
  14. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
  15. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Discussion Papers 2008-23, School of Economics, The University of New South Wales.
  16. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  17. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  18. Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CoFE Discussion Paper 08-06, Center of Finance and Econometrics, University of Konstanz.
  19. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
  20. Christian M. Hafner, 2003. "Fourth Moment Structure of Multivariate GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 26-54.
  21. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  22. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
  23. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
  24. repec:ulb:ulbeco:2013/5863 is not listed on IDEAS
  25. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  26. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
  27. Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
  28. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
  29. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  30. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  31. Meddahi, Nour & Mykland, Per & Shephard, Neil, 2011. "Realized Volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 1-1, January.
  32. Luc Bauwens & David Veredas & Winfried Pohlmeier, 2005. "High frequency finance," ULB Institutional Repository 2013/136220, ULB -- Universite Libre de Bruxelles.
  33. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Matteo Barigozzi & Christian T. Brownlees & Giampiero M. Gallo & David Veredas, 2014. "Disentangling Systematic and Idiosyncratic Dynamics in Panels of Volatility Measures," Econometrics Working Papers Archive 2014_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
  2. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
  3. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
  4. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  5. Huang, Shih-Feng & Tu, Ya-Ting, 2014. "Asymptotic distribution of the EPMS estimator for financial derivatives pricing," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 129-145.
  6. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
  7. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, School of Economics and Management, University of Aarhus.
  8. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
  9. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
  10. Pawel Janus & Andr� Lucas & and Anne Opschoor, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute.
  11. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, School of Economics and Management, University of Aarhus.
  12. BAUWENS, Luc & STORTI, Giuseppe, 2012. "Computationally efficient inference procedures for vast dimensional realized covariance models," CORE Discussion Papers 2012028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
  14. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
  15. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
  16. Kevin Sheppard, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:1101. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.