Advanced Search
MyIDEAS: Login to save this paper or follow this series

Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and Covolatility

Contents:

Author Info

  • Peter Reinhard Hansen
  • Asger Lunde
  • Valeri Voev

Abstract

We introduce a multivariate GARCH model that incorporates realized measures of volatility and covolatility. The realized measures extract information about the current level of volatility and covolatility from high-frequency data, which is particularly useful for the modeling of return volatility during periods with rapid changes in volatility and covolatility. When applied to market returns in conjunction with returns on an individual asset, the model yields a dynamic model of the conditional regression coefficient that is known as the beta. We apply the model to a large set of assets and find the conditional betas to be far more variable than is usually found with rolling-window regressions based exclusively on daily returns. In the empirical part of the paper we examine the cross-sectional as well as the time variation of the conditional beta series during the financial crises.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd12-269.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Institute of Economic Research, Hitotsubashi University in its series Global COE Hi-Stat Discussion Paper Series with number gd12-269.

as in new window
Length:
Date of creation: Dec 2012
Date of revision:
Handle: RePEc:hst:ghsdps:gd12-269

Contact details of provider:
Postal: 2-1 Naka, Kunitachi City, Tokyo 186
Phone: +81-42-580-8327
Fax: +81-42-580-8333
Email:
Web page: http://www.ier.hit-u.ac.jp/
More information through EDIRC

Related research

Keywords: Financial Volatility; Beta; Realized GARCH; High Frequency Data;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," CREATES Research Papers 2008-63, School of Economics and Management, University of Aarhus.
  2. Joao Gomes & Leonid Kogan & Lu Zhang, 2003. "Equilibrium Cross Section of Returns," Journal of Political Economy, University of Chicago Press, vol. 111(4), pages 693-732, August.
  3. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  4. Henrik Hansen & Søren Johansen, 1999. "Some tests for parameter constancy in cointegrated VAR-models," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 306-333.
  5. Visser, Marcel P., 2008. "Garch Parameter Estimation Using High-Frequency Data," MPRA Paper 9076, University Library of Munich, Germany.
  6. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
  7. Lewellen, Jonathan & Nagel, Stefan, 2006. "The conditional CAPM does not explain asset-pricing anomalies," Journal of Financial Economics, Elsevier, vol. 82(2), pages 289-314, November.
  8. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  9. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print peer-00732537, HAL.
  10. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  11. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
  12. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, 09.
  13. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
  14. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
  15. Ferson, Wayne E & Harvey, Campbell R, 1993. "The Risk and Predictability of International Equity Returns," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 527-66.
  16. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
  17. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
  18. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  19. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
  20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  21. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  22. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages C1-C32, November.
  23. Hansen, Bruce E., 1992. "Testing for parameter instability in linear models," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 517-533, August.
  24. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," Economics Working Papers ECO2012/26, European University Institute.
  25. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
  26. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. " Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
  27. Shanken, Jay, 1990. "Intertemporal asset pricing : An Empirical Investigation," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 99-120.
  28. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2011. "The Merit of High-Frequency Data in Portfolio Allocation," SFB 649 Discussion Papers SFB649DP2011-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  2. Peter Christoffersen & Mathieu Fournier & Kris Jacobs, 2013. "The Factor Structure in Equity Options," CREATES Research Papers 2013-47, School of Economics and Management, University of Aarhus.
  3. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, 09.
  4. Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2010-002, ULB -- Universite Libre de Bruxelles.
  5. Kevin Sheppard, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
  6. Asger Lunde & Kasper V. Olesen, 2013. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, School of Economics and Management, University of Aarhus.
  7. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
  8. Bannouh, K. & Martens, M.P.E. & Oomen, R.C.A. & van Dijk, D.J.C., 2012. "Realized mixed-frequency factor models for vast dimensional covariance estimation," ERIM Report Series Research in Management ERS-2012-017-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  9. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2013. "Do High-Frequency Data Improve High-Dimensional Portfolio Allocations?," SFB 649 Discussion Papers SFB649DP2013-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd12-269. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.