IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/transit-development.html
   My bibliography  Save this paper

Developing a Comprehensive US Transit Accessibility Database

Author

Listed:
  • Andrew Owen
  • David Levinson

    (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

This paper discusses the development of a national public transit job accessibility evaluation framework, focusing on lessons learned, data source evaluation and selection, calculation methodology, and examples of accessibility evaluation results. The accessibility evaluation framework described here builds on methods developed in earlier projects, extended for use on a national scale and at the Census block level. Application on a national scale involves assembling and processing a comprehensive national database of public transit network topology and travel times. This database incorporates the computational advancement of calculating accessibility continuously for every minute within a departure time window of interest. This increases computational complexity, but provides a very robust representation of the interaction between transit service frequency and accessibility at multiple departure times.

Suggested Citation

  • Andrew Owen & David Levinson, 2015. "Developing a Comprehensive US Transit Accessibility Database," Working Papers 000141, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:transit-development
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/180074
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    2. Jonathan Levine & Joe Grengs & Qingyun Shen & Qing Shen, 2012. "Does Accessibility Require Density or Speed?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 78(2), pages 157-172.
    3. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    4. Tilahun, Nebiyou & Levinson, David, 2011. "Work and home location: Possible role of social networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 323-331, May.
    5. Mizuki Kawabata, 2009. "Spatiotemporal Dimensions of Modal Accessibility Disparity in Boston and San Francisco," Environment and Planning A, , vol. 41(1), pages 183-198, January.
    6. Mizuki Kawabata & Qing Shen, 2007. "Commuting Inequality between Cars and Public Transit: The Case of the San Francisco Bay Area, 1990-2000," Urban Studies, Urban Studies Journal Limited, vol. 44(9), pages 1759-1780, August.
    7. Wu, Belinda M. & Hine, Julian P., 2003. "A PTAL approach to measuring changes in bus service accessibility," Transport Policy, Elsevier, vol. 10(4), pages 307-320, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    2. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    3. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    4. Lissy La Paix & Karst Geurs, 2015. "Scenarios for measuring station-based impedances in a national transport model," ERSA conference papers ersa15p1310, European Regional Science Association.
    5. Kim, Junghwan & Lee, Bumsoo, 2019. "More than travel time: New accessibility index capturing the connectivity of transit services," Journal of Transport Geography, Elsevier, vol. 78(C), pages 8-18.
    6. Karner, Alex, 2018. "Assessing public transit service equity using route-level accessibility measures and public data," Journal of Transport Geography, Elsevier, vol. 67(C), pages 24-32.
    7. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    8. Yan, Xiang & Bejleri, Ilir & Zhai, Liang, 2022. "A spatiotemporal analysis of transit accessibility to low-wage jobs in Miami-Dade County," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Xueming (Jimmy) Chen, 2018. "Review of the Transit Accessibility Concept: A Case Study of Richmond, Virginia," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    10. Allen, Jeff & Farber, Steven, 2019. "A measure of competitive access to destinations for comparing across multiple study regions," SocArXiv 8yf7q, Center for Open Science.
    11. Xu, Wangtu (Ato) & Li, Yongling & Wang, Hui, 2016. "Transit accessibility for commuters considering the demand elasticities of distance and transfer," Journal of Transport Geography, Elsevier, vol. 56(C), pages 138-156.
    12. Boisjoly, Geneviève & El-Geneidy, Ahmed M., 2017. "The insider: A planners' perspective on accessibility," Journal of Transport Geography, Elsevier, vol. 64(C), pages 33-43.
    13. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    14. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    15. Jingming Liu & Xianhui Hou & Chuyu Xia & Xiang Kang & Yujun Zhou, 2021. "Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data," Land, MDPI, vol. 10(6), pages 1-20, May.
    16. Mengying Cui & David Levinson, 2020. "Primal and Dual Access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    17. Dewulf, Bart & Neutens, Tijs & Vanlommel, Mario & Logghe, Steven & De Maeyer, Philippe & Witlox, Frank & De Weerdt, Yves & Van de Weghe, Nico, 2015. "Examining commuting patterns using Floating Car Data and circular statistics: Exploring the use of new methods and visualizations to study travel times," Journal of Transport Geography, Elsevier, vol. 48(C), pages 41-51.
    18. Maharjan, Sanju & Tilahun, Nebiyou & Ermagun, Alireza, 2022. "Spatial equity of modal access gap to multiple destination types across Chicago," Journal of Transport Geography, Elsevier, vol. 104(C).
    19. Tyndall, Justin, 2016. "Commuter Mobility and Economic Performance in US Cities," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319292, Transportation Research Forum.
    20. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.

    More about this item

    Keywords

    Accessibility; connectivity; transit;
    All these keywords.

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:transit-development. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.