IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/gametheorylanechanginglitreview.html
   My bibliography  Save this paper

A Review of Game Theory Models of Lane Changing

Author

Listed:
  • Ji Ang
  • David Levinson

    (TransportLab, School of Civil Engineering, University of Sydney)

Abstract

Driver lane-changing behaviours have a significant impact on the safety and the capacity of the vehicle-based traffic system. Therefore, modeling lane-changing maneuvers has become an essential component of driving behaviour analysis. Among microscopic LC models, game theory-based lane-changing models highlight the interaction of drivers, which reveal a more realistic image of driving behaviours compared to other classic models. However, the potential of game theory to describe the human driver’s lane-changing strategies is currently under-estimated. This paper aims to review the recent development of game-theoretic models that are classified according to their different methodologies and features. They are designed for both human-driven and autonomous vehicles, and we hope they can find applications in future AV industries.

Suggested Citation

  • Ji Ang & David Levinson, 2020. "A Review of Game Theory Models of Lane Changing," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:gametheorylanechanginglitreview
    DOI: 10.1080/23249935.2020.1770368
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/2123/21348
    File Function: First version, 2020
    Download Restriction: no

    File URL: https://libkey.io/10.1080/23249935.2020.1770368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Tirole, Jean, 1991. "Perfect Bayesian equilibrium and sequential equilibrium," Journal of Economic Theory, Elsevier, vol. 53(2), pages 236-260, April.
    2. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    3. Patrick Bajari & Han Hong & Stephen P. Ryan, 2010. "Identification and Estimation of a Discrete Game of Complete Information," Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.
    4. Mahmassani, Hani & Sheffi, Yosef, 1981. "Using gap sequences to estimate gap acceptance functions," Transportation Research Part B: Methodological, Elsevier, vol. 15(3), pages 143-148, June.
    5. Newbery, David M, 1990. "Pricing and Congestion: Economic Principles Relevant to Pricing Roads," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 6(2), pages 22-38, Summer.
    6. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    7. Steimetz, Seiji S.C., 2008. "Defensive driving and the external costs of accidents and travel delays," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 703-724, November.
    8. Drew Fudenberg & David Levine, 2008. "Subgame–Perfect Equilibria of Finite– and Infinite–Horizon Games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 1, pages 3-20, World Scientific Publishing Co. Pte. Ltd..
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Kita, Hideyuki, 1999. "A merging-giveway interaction model of cars in a merging section: a game theoretic analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(3-4), pages 305-312, April.
    11. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    12. Patire, Anthony D. & Cassidy, Michael J., 2011. "Lane changing patterns of bane and benefit: Observations of an uphill expressway," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 656-666, May.
    13. Pål Andreas Pedersen, 2001. "A Game Theoretical Approach to Road Safety," Studies in Economics 0105, School of Economics, University of Kent.
    14. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    15. Daganzo, Carlos F., 1981. "Estimation of gap acceptance parameters within and across the population from direct roadside observation," Transportation Research Part B: Methodological, Elsevier, vol. 15(1), pages 1-15, February.
    16. Luis E Cortés-Berrueco & Carlos Gershenson & Christopher R Stephens, 2016. "Traffic Games: Modeling Freeway Traffic with Game Theory," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-34, November.
    17. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakup Çelikbilek & Sarbast Moslem, 2023. "A grey multi criteria decision making application for analyzing the essential reasons of recurrent lane change," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 916-941, June.
    2. Guo, Wenfeng & Song, Xiaolin & Cao, Haotian & Zhao, Song & Yi, Binlin & Wang, Jianqiang, 2023. "Human-centered driving authority allocation for driver-automation shared control: A two-layer game-theoretic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Tianpei Tang & Yuntao Guo & Guohui Zhang & Hua Wang & Quan Shi, 2020. "Understanding the Interaction between Cyclists’ Traffic Violations and Enforcement Strategies: An Evolutionary Game-Theoretic Analysis," IJERPH, MDPI, vol. 17(22), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang Ji & David Levinson, 2021. "Estimating the Social Gap with a Game Theory Model of Lane Changing," Working Papers 2021-02, University of Minnesota: Nexus Research Group.
    2. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    3. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    4. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Mehr, Negar & Li, Ruolin & Horowitz, Roberto, 2021. "A game theoretic macroscopic model of lane choices at traffic diverges with applications to mixed–autonomy networks," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 45-59.
    6. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    7. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    8. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    9. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    10. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    11. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    12. Wang, Bingtong & Li, Zhibin & Wang, Shunchao & Li, Meng & Ji, Ang, 2022. "Modeling bounded rationality in discretionary lane change with the quantal response equilibrium of game theory," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 145-161.
    13. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    14. Sheikh, Muhammad Sameer & Wang, Ji & Regan, Amelia, 2021. "A game theory-based controller approach for identifying incidents caused by aberrant lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    15. Li, Zhengming & Smirnova, M.N. & Zhang, Yongliang & Smirnov, N.N. & Zhu, Zuojin, 2022. "Tunnel speed limit effects on traffic flow explored with a three lane model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 185-197.
    16. Li, Gen & Zhao, Le & Tang, Wenyun & Wu, Lan & Ren, Jiaolong, 2023. "Modeling and analysis of mandatory lane-changing behavior considering heterogeneity in means and variances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    17. Andrew M. Colman & Briony D. Pulford, 2015. "Psychology of Game Playing: Introduction to a Special Issue," Games, MDPI, vol. 6(4), pages 1-8, December.
    18. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    19. Daniel Lacker & Kavita Ramanan, 2019. "Rare Nash Equilibria and the Price of Anarchy in Large Static Games," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 400-422, May.
    20. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.

    More about this item

    Keywords

    lane-changing models; game theory; driver interaction; driver utility; autonomous vehicles;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:gametheorylanechanginglitreview. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.