Advanced Search
MyIDEAS: Login

A Maximum Likelihood Method for the Incidental Parameter Problem

Contents:

Author Info

  • Marcelo Moreira

Abstract

This paper uses the invariance principle to solve the incidental parameter problem. We seek group actions that preserve the structural parameter and yield a maximal invariant in the parameter space with fixed dimension. M-estimation from the likelihood of the maximal invariant statistic yields the maximum invariant likelihood estimator (MILE). We apply our method to (i) a stationary autoregressive model with fixed effects; (ii) an agent-specific monotonic transformation model; (iii) an instrumental variable (IV) model; and (iv) a dynamic panel data model with fixed effects. In the first two examples, there exist group actions that completely discard the incidental parameters. In a stationary autoregressive model with fixed effects, MILE coincides with existing conditional and integrated likelihood methods. The invariance principle also gives a new perspective to the marginal likelihood approach. In an agent-specific monotonic transformation model, our approach yields an estimator that is consistent and asymptotically normal when errors are Gaussian. In an instrumental variable (IV) model, this paper unifies asymptotic results under strong instruments (SIV) and many weak instruments (MWIV) frameworks. We obtain consistency, asymptotic normality, and optimality results for the limited information maximum likelihood estimator directly from the invariant likelihood. Our approach is parallel to M-estimation in problems in which the number of parameters does not change with the sample size. In a dynamic panel data model with N individuals and T time periods, MILE is consistent as long as NT goes to infinity. We obtain a large N, fixed T bound; this bound coincides with Hahn and Kuersteiner's (2002) bound when T goes to infinity. MILE reaches (i) our bound when N is large and T is fixed; and (ii) Hahn and Kuersteiner's (2002) bound when both N and T are large.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.nber.org/papers/w13787.pdf
Download Restriction: no

Bibliographic Info

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 13787.

as in new window
Length:
Date of creation: Feb 2008
Date of revision:
Publication status: published as Aizer, Anna “Neighborhood Violence and Urban Youth” chapter in Disadvantaged Youth , Jonathon Gruber, ed. (April 2007 ) also NBER Working Paper #13773
Handle: RePEc:nbr:nberwo:13787

Note: TWP
Contact details of provider:
Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Email:
Web page: http://www.nber.org
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
  2. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
  3. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-81, May.
  4. Whitney K. Newey, 2004. "Efficient Semiparametric Estimation via Moment Restrictions," Econometrica, Econometric Society, vol. 72(6), pages 1877-1897, November.
  5. Christian Hansen & Jerry Hausman & Whitney Newey, 2006. "Estimation with many instrumental variables," CeMMAP working papers CWP19/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  6. Paul A. Bekker & Jan Ploeg, 2005. "Instrumental variable estimation based on grouped data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(3), pages 239-267.
  7. Chioda, Laura & Jansson, Michael, 2009. "Optimal Invariant Inference When The Number Of Instruments Is Large," Econometric Theory, Cambridge University Press, vol. 25(03), pages 793-805, June.
  8. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
  9. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
  10. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
  11. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-41, May.
  12. Arellano, Manuel & Bond, Stephen, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Wiley Blackwell, vol. 58(2), pages 277-97, April.
  13. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
  14. Gary Chamberlain & Marcelo J. Moreira, 2009. "Decision Theory Applied to a Linear Panel Data Model," Econometrica, Econometric Society, vol. 77(1), pages 107-133, 01.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:13787. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.