Advanced Search
MyIDEAS: Login

Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure

Contents:

Author Info

  • Joshua Angrist
  • Victor Chernozhukov
  • Ivan Fernandez-Val

Abstract

Quantile regression(QR) fits a linear model for conditional quantiles, just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean square error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covariates suggests that QR may have a similar property, but the exact nature of the linear approximation has remained elusive. In this paper, we show that QR can be interpreted as minimizing a weighted mean-squared error loss function for specification error. The weighting function is an average density of the dependent variable near the true conditional quantile. The weighted least squares interpretation of QR is used to derive an omitted variables bias formula and a partial quantile correlation concept, similar to the relationship between partial correlation and OLS. We also derive general asymptotic results for QR processes allowing for misspecification of the conditional quantile function, extending earlier results from a single quantile to the entire process. The approximation properties of QR are illustrated through an analysis of the wage structure and residual inequality in US Census data for 1980, 1990, and 2000. The results suggest continued residual inequality growth in the 1990s, primarily in the upper half of the wage distribution and for college graduates.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.nber.org/papers/w10428.pdf
Download Restriction: no

Bibliographic Info

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 10428.

as in new window
Length:
Date of creation: Apr 2004
Date of revision:
Publication status: published as Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, 03.
Handle: RePEc:nbr:nberwo:10428

Note: LS
Contact details of provider:
Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Email:
Web page: http://www.nber.org
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
  2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  3. Joshua Angrist & Alan Krueger, 1998. "Empirical Strategies in Labor Economics," Working Papers 780, Princeton University, Department of Economics, Industrial Relations Section..
  4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, October.
  5. Hahn, Jinyong, 1997. "Bayesian Bootstrap of the Quantile Regression Estimator: A Large Sample Study," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(4), pages 795-808, November.
  6. Amanda Gosling & Stephen Machin & Costas Meghir, 1994. "The changing distribution of male wages in the UK," IFS Working Papers W94/13, Institute for Fiscal Studies.
  7. White, Halbert & Kim, Tae-Hwan, 2002. "Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression," University of California at San Diego, Economics Working Paper Series qt1s38s0dn, Department of Economics, UC San Diego.
  8. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318 Elsevier.
  9. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
  10. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
  11. Juhn, Chinhui & Murphy, Kevin M & Pierce, Brooks, 1993. "Wage Inequality and the Rise in Returns to Skill," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 410-42, June.
  12. White, Halbert, 1980. "Using Least Squares to Approximate Unknown Regression Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 149-70, February.
  13. Katz, Lawrence F. & Autor, David H., 1999. "Changes in the wage structure and earnings inequality," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 26, pages 1463-1555 Elsevier.
  14. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-60, November.
  15. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
  16. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:10428. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.