Advanced Search
MyIDEAS: Login to save this paper or follow this series

Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model

Contents:

Author Info

  • Pipat Wongsaart
  • Jiti Gao

    ()

Registered author(s):

Abstract

A crucially important advantage of the semiparametric regression approach to the nonlinear autoregressive conditional duration (ACD) model developed in Wongsaart et al. (2011), i.e. the so-called Semiparametric ACD (SEMI-ACD) model, is the fact that its estimation method does not require a parametric assumption on the conditional distribution of the standardized duration process and, therefore, the shape of the baseline hazard function. The research in this paper complements that of Wongsaart et al. (2011) by introducing a nonparametric procedure to test the parametric density function of ACD error through the use of the SEMI-ACD based residual. The hypothetical structure of the test is useful, not only to the establishment of a better parametric ACD model, but also to the specification testing of a number of financial market microstructure hypotheses, especially those related to the information asymmetry in finance. The testing procedure introduced in this paper differs in many ways from those discussed in existing literatures, for example Aït-Sahalia (1996), Gao and King (2004) and Fernandes and Grammig (2005). We show theoretically and experimentally the statistical validity of our testing procedure, while demonstrating its usefulness and practicality using datasets from New York and Australia Stock Exchange.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2011/wp18-11.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 18/11.

as in new window
Length: 44 pages
Date of creation: Sep 2011
Date of revision:
Handle: RePEc:msh:ebswps:2011-18

Contact details of provider:
Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Email:
Web page: http://www.buseco.monash.edu.au/depts/ebs/
More information through EDIRC

Order Information:
Email:
Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/

Related research

Keywords: Duration model; hazard rates and random measures; nonparametric kernel testing.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
  2. Fernandes, Marcelo & Grammig, Joachim, 2002. "A Family of Autoregressive Conditional Duration Models," Economics Working Papers (Ensaios Economicos da EPGE) 440, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  4. Fernandes, M. & Grammig, J., 2000. "Non-Parametric Specification Tests for Conditional Duration Models," Economics Working Papers eco2000/4, European University Institute.
  5. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
  6. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
  7. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
  8. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.
  9. Drost, F.C. & Werker, B.J.M., 2001. "Semiparametric Duration Models," Discussion Paper 2001-11, Tilburg University, Center for Economic Research.
  10. Gao, Jiti & King, Maxwell, 2004. "Adaptive Testing In Continuous-Time Diffusion Models," Econometric Theory, Cambridge University Press, vol. 20(05), pages 844-882, October.
  11. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
  12. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(3), pages 471-480, September.
  13. GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," CORE Discussion Papers 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  14. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
  15. BAUWENS, Luc & VEREDAS, David, . "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," CORE Discussion Papers RP -1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  16. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
  17. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
  18. Olivier Renault & Jean-Luc Prigent & Olivier Scaillet, 2000. "An Autoregressive Conditional Binomial Option Pricing Model," FMG Discussion Papers dp364, Financial Markets Group.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2011-18. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.