Advanced Search
MyIDEAS: Login

A Quasi-locally Most powerful Test for Correlation in the conditional Variance of Positive Data

Contents:

Author Info

  • Brendan P.M. McCabe
  • Gael Martin

    ()

  • Keith Freeland

Abstract

A test is derived for short-memory correlation in the conditional variance of strictly positive, skewed data. The test is quasi-locally most powerful (QLMP) under the assumption of conditionally gamma data. Analytical asymptotic relative efficiency calculations show that an alternative test, based on the first-order autocorrelation coefficient of the squared data, has negligible relative power to detect correlation in the conditional variance. Finite sample simulation results con.rm the poor performance of the squares-based test for fixed alternatives, as well as demonstrating the poor performance of the test based on the first-order autocorrelation coefficient of the raw (levels) data. Robustness of the QLMP test, both to misspecification of the conditional distribution and misspecification of the dynamics is also demonstrated using simulation. The test is illustrated using financial trade durations data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp2-10.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 2/10.

as in new window
Length: 26 pages
Date of creation: 09 Feb 2010
Date of revision:
Handle: RePEc:msh:ebswps:2010-2

Contact details of provider:
Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Email:
Web page: http://www.buseco.monash.edu.au/depts/ebs/
More information through EDIRC

Order Information:
Email:
Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/

Related research

Keywords: Locally most powerful test; quasi-likelihood; asymptotic relative efficiency; durations data; gamma distribution; Weibull distribution.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. BAUWENS , Luc & GIOT, Pierre & GRAMMIG, Joachim & VEREDAS, David, 2000. "A comparison of financial duration models via density forecasts," CORE Discussion Papers 2000060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. BAUWENS, Luc & VEREDAS, David, . "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," CORE Discussion Papers RP -1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
  4. Luc Bauwens & Nikolaus Hautsch, 2007. "Modelling Financial High Frequency Data Using Point Processes," SFB 649 Discussion Papers SFB649DP2007-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  5. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
  6. Chesher, Andrew D, 1984. "Testing for Neglected Heterogeneity," Econometrica, Econometric Society, vol. 52(4), pages 865-72, July.
  7. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
  8. Philippe Huber & Elvezio Ronchetti & Maria-Pia Victoria-Feser, 2004. "Estimation of generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 893-908.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-2. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.