IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2010-22.html
   My bibliography  Save this paper

Inter-fuel Substitution in the Chinese Iron and Steel Sector

Author

Listed:
  • Russell Smyth
  • Paresh Kumar Narayan
  • Hongliang Shi

Abstract

China’s iron and steel sector is the largest in the world and has been the backbone of Chinese heavy industry. This sector is also a major consumer of energy and, in particular, coal. As a result, the iron and steel sector in China is a major contributor to greenhouse gas emissions and other pollutants. In this paper we examine the potential for inter-fuel substitution between coal, electricity, natural gas and oil in the Chinese iron and steel sector and find that these energy inputs are substitutes. The finding that these alternative energy sources are substitutes for coal suggests that China has the potential to switch from coal to cleaner energy sources; hence, retaining the ability to fuel its iron and steel sector, while reducing the adverse environmental implications.

Suggested Citation

  • Russell Smyth & Paresh Kumar Narayan & Hongliang Shi, 2010. "Inter-fuel Substitution in the Chinese Iron and Steel Sector," Monash Economics Working Papers 22-10, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2010-22
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/eco/research/papers/2010/2210interfuelsmythnarayanshi.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jefferson, Gary H., 1990. "China's iron and steel industry : Sources of enterprise efficiency and the impact of reform," Journal of Development Economics, Elsevier, vol. 33(2), pages 329-355, October.
    2. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    2. Zachlod-Jelec, Magdalena & Boratynski, Jakub, 2016. "How large and uncertain are costs of 2030 GHG emissions reduction target for the European countries? Sensitivity analysis in a global CGE model," MF Working Papers 26, Ministry of Finance in Poland.
    3. Höök, Mikael & Fantazzini, Dean & Angelantoni, André & Snowden, Simon, 2013. "Hydrocarbon liquefaction: viability as a peak oil mitigation strategy," MPRA Paper 46957, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    2. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    3. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
    4. Wu, Yanrui, 1995. "The productive efficiency of Chinese iron and steel firms A stochastic frontier analysis," Resources Policy, Elsevier, vol. 21(3), pages 215-222, September.
    5. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    6. Karen Fisher-Vanden, Yong Hu, Gary Jefferson, Michael Rock and Michael Toman, 2016. "Factors influencing energy intensity in four Chinese industries," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    7. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    8. Crompton, Paul & Lesourd, Jean-Baptiste, 2008. "Economies of scale in global iron-making," Resources Policy, Elsevier, vol. 33(2), pages 74-82, June.
    9. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    10. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    11. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    12. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    13. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    14. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    15. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    16. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    17. Movshuk, Oleksandr, 2004. "Restructuring, productivity and technical efficiency in China's iron and steel industry, 1988-2000," Journal of Asian Economics, Elsevier, vol. 15(1), pages 135-151, February.
    18. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    19. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    20. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.

    More about this item

    Keywords

    China; inter-fuel substitution; iron and steel;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2010-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.