Advanced Search
MyIDEAS: Login to save this paper or follow this series

Nonparametric identification using instrumental variables: sufficient conditions for completeness

Contents:

Author Info

  • Yingyao Hu

    (Institute for Fiscal Studies and Johns Hopkins University)

  • Ji-Liang Shiu

Abstract

This paper provides sufficient conditions for the nonparametric identification of the regression function m(.) in a regression model with an endogenous regressor x and an instrumental variable z. It has been shown that the identification of the regression function from the conditional expectation of the dependent variable on the instrument relies on the completeness of the distribution of the endogenous regressor conditional on the instrument, i.e., f(x/z). We provide sufficient conditions for the completeness of f(x/z) without imposing a specific functional form, such as the exponential family. We show that if the conditional density f(x/z) coincides with an existing complete density at a limit point in the support of z, then f(x/z) itself is complete, and therefore, the regression function m(.) is nonparametrically identified. We use this general result provide specific sufficient conditions for completeness in three different specifications of the relationship between the endogenous regressor x and the instrumental variable z.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cemmap.ifs.org.uk/wps/cwp2511.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP25/11.

as in new window
Length:
Date of creation: Jun 2011
Date of revision:
Handle: RePEc:ifs:cemmap:25/11

Contact details of provider:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Email:
Web page: http://cemmap.ifs.org.uk
More information through EDIRC

Order Information:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. D’Haultfoeuille, Xavier, 2011. "On The Completeness Condition In Nonparametric Instrumental Problems," Econometric Theory, Cambridge University Press, vol. 27(03), pages 460-471, June.
  2. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, 01.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:25/11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.