Advanced Search
MyIDEAS: Login

An Iteration Procedure for Solving Integral Equations Related to Optimal Stopping Problems

Contents:

Author Info

  • Denis Belomestny
  • Pavel V. Gapeev

Abstract

A new algorithm for finding value functions of finite horizon optimal stopping problems in one-dimensional diffusion models is presented. It is based on a time discretization of the corresponding integral equation. The proposed iterative procedure for solving the discretized integral equation converges in a finite number of steps and delivers in each step a lower or an upper bound for value of discretized problem on the whole time interval. The remarks on the application of the method for solving integral equations related to some optimal stopping problems are given.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2006-043.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2006-043.

as in new window
Length: 18 pages
Date of creation: May 2006
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2006-043

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://sfb649.wiwi.hu-berlin.de
More information through EDIRC

Related research

Keywords: Optimal stopping; finite horizon; diffusion process; upper and lower bounds; Black-Scholes model; American put option; Asian option; Russian option; Bayesian sequential testing problem; disorder detection problem;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Alexander Novikov & Albert Shiryaev, 2004. "On an Effective Solution of the Optimal Stopping Problem for Random Walks," Research Paper Series 131, Quantitative Finance Research Centre, University of Technology, Sydney.
  2. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286.
  3. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
  4. Peter Carr & Robert Jarrow & Ravi Myneni, 1992. "Alternative Characterizations Of American Put Options," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 87-106.
  5. Kim, In Joon, 1990. "The Analytic Valuation of American Options," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-72.
  6. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
  7. Denis Belomestny & Grigori Milstein, 2006. "Adaptive Simulation Algorithms for Pricing American and Bermudian Options by Local Analysis of Financial Market," SFB 649 Discussion Papers SFB649DP2006-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  8. Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2006-043. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.