Advanced Search
MyIDEAS: Login

Analytical approximations for the critical stock prices of American options: a performance comparison

Contents:

Author Info

  • Minqiang Li

    ()

Abstract

Many e±cient and accurate analytical methods for pricing American options now exist. However, while they can produce accurate option prices, they often do not give accurate critical stock prices. In this paper, we propose two new analytical approximations for American options based on the quadratic approximation. We compare our methods with existing analytical methods including the quadratic approximations in Barone-Adesi and Whaley (1987) and Barone-Adesi and Elliott (1991), the lower bound approximation in Broadie and Detemple (1996), the tangent approximation in Bunch and Johnson (2000), the Laplace inversion method in Zhu (2006b), and the interpolation method in Li (2008). Both of our methods give much more accurate critical stock prices than all the existing methods above.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s11147-009-9044-3
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Review of Derivatives Research.

Volume (Year): 13 (2010)
Issue (Month): 1 (April)
Pages: 75-99

as in new window
Handle: RePEc:kap:revdev:v:13:y:2010:i:1:p:75-99

Contact details of provider:
Web page: http://www.springerlink.com/link.asp?id=102989

Related research

Keywords: American option; Analytical approximation; Critical stock price; C02; C63; G13;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
  2. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, Springer, vol. 7(3), pages 361-383.
  3. Johnson, H. E., 1983. "An Analytic Approximation for the American Put Price," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 141-148, March.
  4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
  5. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
  6. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
  7. Bjerksund, Petter & Stensland, Gunnar, 1993. "Closed-form approximation of American options," Scandinavian Journal of Management, Elsevier, vol. 9(Supplemen), pages S87-S99.
  8. Sullivan, Michael A, 2000. "Valuing American Put Options Using Gaussian Quadrature," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 75-94.
  9. Khaliq, A.Q.M. & Voss, D.A. & Kazmi, S.H.K., 2006. "A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 489-502, February.
  10. J. D. Evans & R. Kuske & Joseph B. Keller, 2002. "American options on assets with dividends near expiry," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 219-237.
  11. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-50.
  12. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
  13. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-24, December.
  14. Huang, Jing-zhi & Subrahmanyam, Marti G & Yu, G George, 1996. "Pricing and Hedging American Options: A Recursive Integration Method," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 277-300.
  15. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
  16. David S. Bunch & Herb Johnson, 2000. "The American Put Option and Its Critical Stock Price," Journal of Finance, American Finance Association, vol. 55(5), pages 2333-2356, October.
  17. Peter Carr & Robert Jarrow & Ravi Myneni, 1992. "Alternative Characterizations Of American Put Options," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 87-106.
  18. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
  19. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Li, Minqiang, 2009. "A Quasi-analytical Interpolation Method for Pricing American Options under General Multi-dimensional Diffusion Processes," MPRA Paper 17348, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:13:y:2010:i:1:p:75-99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.