IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00442713.html
   My bibliography  Save this paper

Bootstrap inference in a linear equation estimated by instrumental variables

Author

Listed:
  • Russell Davidson

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, CIREQ - Centre interuniversitaire de recherche en économie quantitative, Department of Economics [Montréal] - McGill University = Université McGill [Montréal, Canada])

  • James Mackinnon

    (Department of Economics - Queen's University [Kingston, Canada])

Abstract

We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that writing all the test statistics—Student's t, Anderson-Rubin, the LM statistic of Kleibergen and Moreira (K), and likelihood ratio (LR)—as functions of six random quantities leads to a number of interesting results about the properties of the tests under weakinstrument asymptotics. We then propose several new procedures for bootstrapping the three non-exact test statistics and also a new conditional bootstrap version of the LR test. These use more efficient estimates of the parameters of the reduced-form equation than existing procedures. When the best of these new procedures is used, both the K and conditional bootstrap LR tests have excellent performance under the null. However, power considerations suggest that the latter is probably the method of choice.

Suggested Citation

  • Russell Davidson & James Mackinnon, 2009. "Bootstrap inference in a linear equation estimated by instrumental variables," Working Papers halshs-00442713, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00442713
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00442713
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00442713/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    2. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    3. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    4. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    5. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    6. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    7. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    8. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    9. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    10. Marcelo J. Moreira & Jack R. Porter & Gustavo A. Suarez, 2004. "Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak," NBER Technical Working Papers 0302, National Bureau of Economic Research, Inc.
    11. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    12. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    13. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    14. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
    15. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    16. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    17. Hillier, Grant, 2009. "Exact Properties Of The Conditional Likelihood Ratio Test In An Iv Regression Model," Econometric Theory, Cambridge University Press, vol. 25(4), pages 915-957, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    2. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    4. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    5. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    6. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    7. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    8. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    9. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    10. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    11. Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
    12. James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 851-881, August.
    13. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    14. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    15. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    16. Noud P.A. van Giersbergen, 2011. "Bootstrapping Subset Test Statistics in IV Regression," UvA-Econometrics Working Papers 11-08, Universiteit van Amsterdam, Dept. of Econometrics.
    17. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    18. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    19. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    20. Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.

    More about this item

    Keywords

    bootstrap; weak instruments; IV estimation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00442713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.