Advanced Search
MyIDEAS: Login

Bootstrapping Subset Test Statistics in IV Regression

Contents:

Author Info

  • Noud P.A. van Giersbergen

Abstract

The finite-sample performance of various bootstrap procedures is studied by simulation in a linear regression model containing 2 endogenous regressors. Besides several residual-based bootstrap procedures, we also consider the GMM bootstrap. The test statistics include t-statistics based on k-class estimators and the robust subset quasi-LR (MQLR) statistic. In the simulations, the restricted fully efficient (RFE) bootstrap DGP based on Fuller estimates and the LIML t-statistic performs best of the Wald-type statistics. Unfortunately, the bootstrap only marginally reduces the conservativeness of the subset MQLR statistic. Finally, the GMM bootstrap does not seem to improve upon the asymptotic approximation. An empirical example illustrates the use of these procedures.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://aseri.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics-research-institute/uva-econometrics/1108.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universiteit van Amsterdam, Dept. of Econometrics in its series UvA-Econometrics Working Papers with number 11-08.

as in new window
Length:
Date of creation: 21 Feb 2011
Date of revision:
Handle: RePEc:ame:wpaper:1108

Contact details of provider:
Postal: Dept. of Econometrics, Universiteit van Amsterdam, Valckenierstraat 65, NL - 1018 XE Amsterdam, The Netherlands
Email:
Web page: http://www.ase.uva.nl/uva-econometrics
More information through EDIRC

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. DUFOUR, Jean-Marie & TAAMOUTI, Mohamed, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Cahiers de recherche 2003-10, Universite de Montreal, Departement de sciences economiques.
  2. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
  3. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  4. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
  5. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
  6. Russell Davidson & James G. MacKinnon, 2007. "Wild Bootstrap Tests For Iv Regression," Departmental Working Papers 2007-14, McGill University, Department of Economics.
  7. Moreira, Marcelo J. & Porter, Jack R. & Suarez, Gustavo A., 2009. "Bootstrap validity for the score test when instruments may be weak," Journal of Econometrics, Elsevier, vol. 149(1), pages 52-64, April.
  8. Chaudhuri, Saraswata & Richardson, Thomas & Robins, James & Zivot, Eric, 2010. "A New Projection-Type Split-Sample Score Test In Linear Instrumental Variables Regression," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1820-1837, December.
  9. Alfonso Flores-Lagunes, 2007. "Finite sample evidence of IV estimators under weak instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 677-694.
  10. Blomquist, Soren, 1996. "Estimation methods for male labor supply functions How to take account of nonlinear taxes," Journal of Econometrics, Elsevier, vol. 70(2), pages 383-405, February.
  11. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  12. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
  13. Saraswata Chaudhuri & Eric Zivot, 2008. "A new method of projection-based inference in GMM with weakly identified nuisance parameters," Working Papers UWEC-2008-26, University of Washington, Department of Economics.
  14. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, 06.
  15. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
  16. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
  17. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  18. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  19. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ame:wpaper:1108. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Noud P.A. van Giersbergen).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.