IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00822731.html
   My bibliography  Save this paper

Tarifications dynamiques et efficacité énergétique : l'apport des Smart Grids

Author

Listed:
  • Claire Bergaentzlé

    (équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Cédric Clastres

    (équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

Abstract

Smart Grid technology stands as a solution in activating the demand side. Enabling a greater monitoring and control of power consumption is a key feature for reaching the energy efficiency and environmental targets fixed by the authorities. For a decade now, demand side management (DSM) programs enabled by smart technologies are showing significant results with respect to energy savings and peak load reductions. Several conclusions and recommendations have been drawn from experimentations feedbacks. However, those conclusions deeply depend of the generation mix of one country as well as the design of its DSM programs.

Suggested Citation

  • Claire Bergaentzlé & Cédric Clastres, 2013. "Tarifications dynamiques et efficacité énergétique : l'apport des Smart Grids," Post-Print halshs-00822731, HAL.
  • Handle: RePEc:hal:journl:halshs-00822731
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00822731
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00822731/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    2. Luis Olmos & Sophia Ruester & Siok Jen Liong & Jean-Michel Glachant, 2010. "Energy Efficiency Actions Related to the Rollout of Smart Meters for Small Consumers," RSCAS Working Papers 2010/02fsr, European University Institute.
    3. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    4. William Vickrey, 1971. "Responsive Pricing of Public Utility Services," Bell Journal of Economics, The RAND Corporation, vol. 2(1), pages 337-346, Spring.
    5. Hung-po Chao, 2011. "Demand response in wholesale electricity markets: the choice of customer baseline," Journal of Regulatory Economics, Springer, vol. 39(1), pages 68-88, February.
    6. Coll-Mayor, Debora & Paget, Mia & Lightner, Eric, 2007. "Future intelligent power grids: Analysis of the vision in the European Union and the United States," Energy Policy, Elsevier, vol. 35(4), pages 2453-2465, April.
    7. Severin Borenstein, 2002. "The Trouble With Electricity Markets: Understanding California's Restructuring Disaster," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 191-211, Winter.
    8. Brophy Haney, A. & Jamasb, T. & Pollitt, M.G., 2009. "Smart Metering and Electricity Demand: Technology, Economics and International Experience," Cambridge Working Papers in Economics 0905, Faculty of Economics, University of Cambridge.
    9. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    10. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    2. Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
    3. Claire Bergaentzlé & Cédric Clastres, 2013. "Demand side management in an integrated electricity market: what are the impacts on generation and environmental concerns ?," Post-Print halshs-00839116, HAL.
    4. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    5. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    6. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    7. Lambin, Xavier, 2020. "Integration of Demand Response in Electricity Market Capacity Mechanisms," Utilities Policy, Elsevier, vol. 64(C).
    8. Nolan Ritter & Julia Anna Bingler, 2021. "Do homo sapiens know their prices? Insights on dysfunctional price mechanisms from a large field experiment," CER-ETH Economics working paper series 21/348, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    9. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    10. Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
    11. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    12. Paul L. Joskow, 2012. "Creating a Smarter U.S. Electricity Grid," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 29-48, Winter.
    13. Capitán, Tabaré & Alpízar, Francisco & Madrigal-Ballestero, Róger & Pattanayak, Subhrendu K., 2021. "Time-varying pricing may increase total electricity consumption: Evidence from Costa Rica," Resource and Energy Economics, Elsevier, vol. 66(C).
    14. Kayo Murakami & Hideki Shimada & Yoshiaki Ushifusa & Takanori Ida, 2022. "Heterogeneous Treatment Effects Of Nudge And Rebate: Causal Machine Learning In A Field Experiment On Electricity Conservation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1779-1803, November.
    15. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    16. S. Borenstein, 2013. "Effective and Equitable Adoption of Opt-In Residential Dynamic Electricity Pricing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(2), pages 127-160, March.
    17. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    18. Spiller, Elisheba & Esparza, Ricardo & Mohlin, Kristina & Tapia-Ahumada, Karen & Ünel, Burçin, 2023. "The role of electricity tariff design in distributed energy resource deployment," Energy Economics, Elsevier, vol. 120(C).
    19. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    20. Koichiro Ito, 2015. "Asymmetric Incentives in Subsidies: Evidence from a Large-Scale Electricity Rebate Program," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 209-237, August.

    More about this item

    Keywords

    Load Shedding; Dynamic Pricing; Smart Grids; Effacement; Tarification Dynamique; réseau électrique intelligent;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00822731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.