IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03190845.html
   My bibliography  Save this paper

Mitigation strategies to enhance the ambition of the nationally determined contributions : an analysis of 4 European countries with the decarbonization wedges methodology

Author

Listed:
  • Sandrine Mathy

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)

  • P. Menanteau

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)

Abstract

Greater efforts are needed to bridge the emission gap between Nationally Determined Contributions and the objective to limit climate change below 2°C. This paper focuses on four European-Union countries: Germany, France, Poland and UK that represent on aggregate 55% of current EU emissions. It analyses national mitigation strategies produced by national research teams in the framework of the COP21_RIPPLES project and compatible with a long-term objective leading to a well below 2°C target either as part of an ambition in 2030 limited to that of the NDCs, or as part of more ambitious early action. We use the decarbonization wedges methodology, an advanced index decomposition analysis methodology for quantifying the contribution of different mitigation strategies. This makes it possible to assess the priorities for action to strengthen the NDCs. The article also highlights the impact sectoral growth dynamics have on the emission trajectories and the resulting necessary mitigation efforts.

Suggested Citation

  • Sandrine Mathy & P. Menanteau, 2020. "Mitigation strategies to enhance the ambition of the nationally determined contributions : an analysis of 4 European countries with the decarbonization wedges methodology," Post-Print hal-03190845, HAL.
  • Handle: RePEc:hal:journl:hal-03190845
    DOI: 10.15173/esr.v24i2.4454
    Note: View the original document on HAL open archive server: https://hal.science/hal-03190845
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03190845/document
    Download Restriction: no

    File URL: https://libkey.io/10.15173/esr.v24i2.4454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    2. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    3. Patrick Criqui & Sandrine Mathy & Jean-Charles Hourcade, 2015. "Pathways to deep decarbonization in France," CIRED Working Papers hal-01202005, HAL.
    4. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    5. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    6. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    7. Michel Elzen & Annemiek Admiraal & Mark Roelfsema & Heleen Soest & Andries F. Hof & Nicklas Forsell, 2016. "Contribution of the G20 economies to the global impact of the Paris agreement climate proposals," Climatic Change, Springer, vol. 137(3), pages 655-665, August.
    8. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    9. Kern, Florian & Gaede, James & Meadowcroft, James & Watson, Jim, 2016. "The political economy of carbon capture and storage: An analysis of two demonstration projects," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 250-260.
    10. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    11. Charlie Wilson & Arnulf Grubler & Kelly S. Gallagher & Gregory F. Nemet, 2012. "Marginalization of end-use technologies in energy innovation for climate protection," Nature Climate Change, Nature, vol. 2(11), pages 780-788, November.
    12. Henri Waisman & Christine Bataille & Harald Winkler & Frank Jotzo & Priyadarshi Shukla & Michel Colombier & Daniel Buira & Patrick Criqui & Manfred Fischedick & Mikiko Kainuma & Emilio La Rovere & Ste, 2019. "A pathway design framework for national low greenhouse gas emission development strategies," Post-Print hal-02079339, HAL.
    13. Sandrine Mathy & Hélène Bouscasse & Sonia Chardonnel & Aïna Chalabaev & Stephan Gabet & Carole Treibich & Rémy Slama, 2020. "Protocol of an Interdisciplinary and Multidimensional Assessment of Pollution Reduction Measures in Urban Areas: MobilAir Project," Post-Print hal-02399821, HAL.
    14. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Erratum: Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(6), pages 1-1, June.
    15. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    16. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    17. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    18. repec:hal:wpaper:hal-01202005 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    2. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    3. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    4. Sindhwani, Rahul & Singh, Punj Lata & Behl, Abhishek & Afridi, Mohd. Shayan & Sammanit, Debaroti & Tiwari, Aviral Kumar, 2022. "Modeling the critical success factors of implementing net zero emission (NZE) and promoting resilience and social value creation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.
    6. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
    7. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    8. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    9. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
    10. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    11. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    12. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    13. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    14. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
    15. Shahiduzzaman, Md & Layton, Allan, 2017. "Decomposition analysis for assessing the United States 2025 emissions target: How big is the challenge?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 372-383.
    16. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    17. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    18. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    19. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
    20. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.

    More about this item

    Keywords

    Climate change; Mitigation strategies; LMDI; Activity effect; Nationally determined contributions; European Countries;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03190845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.