Advanced Search
MyIDEAS: Login

Mixing sets linked by bidirected paths

Contents:

Author Info

  • DI SUMMA, Marco

    ()
    (Dipartimento di Informatica, Università degli Studi di Torino, I-10149 Torino, Italy)

  • WOLSEY, Laurence

    ()
    (Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium)

Registered author(s):

    Abstract

    Recently there has been considerable research on simple mixed-integer sets, called mixing sets, and closely related sets arising in uncapacitated and constant capacity lot- sizing. This in turn has led to study of more general sets, called network-dual sets, for which it is possible to derive extended formulations whose projection gives the convex hull of the network-dual set. Unfortunately this formulation cannot be used (in general) to optimize in polynomial time. Furthermore the inequalities definining the convex hull of a network-dual set in the original space of variables are known only for some special cases. Here we study two new cases, in which the continuous variables of the network-dual set are linked by a bi- directed path. In the first case, which is motivated by lot-sizing problems with (lost) sales, we provide a description of the convex hull as the intersection of the convex hulls of 2^n mixing sets, where n is the number of continuous variables of the set. However optimization is polynomial as only n + 1 of the sets are required for any given objective function. In the second case, generalizing single arc flow sets, we describe again the convex hull as an intersection of an exponential number of mixing sets and also give a combinatorial polynomial-time separation algorithm.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2010_63web.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2010063.

    as in new window
    Length:
    Date of creation: 01 Oct 2010
    Date of revision:
    Handle: RePEc:cor:louvco:2010063

    Contact details of provider:
    Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
    Phone: 32(10)474321
    Fax: +32 10474304
    Email:
    Web page: http://www.uclouvain.be/core
    More information through EDIRC

    Related research

    Keywords: mixing sets; extended formulations; mixed integer programming; lot-sizing with sales;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Winfried Pohlmeier & Luc Bauwens & David Veredas, 2007. "High frequency financial econometrics. Recent developments," ULB Institutional Repository 2013/136223, ULB -- Universite Libre de Bruxelles.
    2. Belleflamme,Paul & Peitz,Martin, 2010. "Industrial Organization," Cambridge Books, Cambridge University Press, number 9780521681599, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2010063. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.