IDEAS home Printed from https://ideas.repec.org/p/col/000518/018213.html
   My bibliography  Save this paper

Barren Lives: Drought shocks and agricultural vulnerability in the Brazilian Semi-Arid

Author

Listed:
  • Lucas de Almeida Nogueira da Costa
  • André Albuquerque Sant?Anna
  • Carlos Eduardo Frickman Young

Abstract

This paper studies the effects of drought shocks in a vulnerable environment – the Brazilian Semi-Arid. We analyze the impact of drought shocks, measured as deviations from historical averages, on agricultural outcomes and land-use decisions in a region that suffers recurrently with drought. After controlling for municipality and year fixed effects, we use weather shocks to exactly identify outcomes. Our benchmark results show substantial effects on the loss of crop area and on the value of agricultural output. By investigating distributional effects, we are able to show that crops related to family farming suffer more from drought shocks. We follow our investigation by testing heterogeneity effects and show that adequate water provision and maintenance of forest cover help in reducing the impact of drought shocks. Finally, we show that drought shocks in the previous year affect deforestation in the following year.

Suggested Citation

  • Lucas de Almeida Nogueira da Costa & André Albuquerque Sant?Anna & Carlos Eduardo Frickman Young, 2020. "Barren Lives: Drought shocks and agricultural vulnerability in the Brazilian Semi-Arid," Documentos de Trabajo 18213, The Latin American and Caribbean Economic Association (LACEA).
  • Handle: RePEc:col:000518:018213
    as

    Download full text from publisher

    File URL: http://vox.lacea.org/files/Working_Papers/lacea_wps_0046_almeida_albuquerque_frickman.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rocha, Rudi & Soares, Rodrigo R., 2015. "Water scarcity and birth outcomes in the Brazilian semiarid," Journal of Development Economics, Elsevier, vol. 112(C), pages 72-91.
    2. Assunção, Juliano & Chein, Flávia, 2016. "Climate change and agricultural productivity in Brazil: future perspectives," Environment and Development Economics, Cambridge University Press, vol. 21(5), pages 581-602, October.
    3. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    6. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    7. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    8. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    9. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    10. Robin Burgess & Francisco J.M. Costa & Benjamin A. Olken, 2018. "Wilderness Conservation and the Reach of the State: Evidence from National Borders in the Amazon," NBER Working Papers 24861, National Bureau of Economic Research, Inc.
    11. Taraz, Vis, 2017. "Adaptation to climate change: historical evidence from the Indian monsoon," Environment and Development Economics, Cambridge University Press, vol. 22(5), pages 517-545, October.
    12. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    13. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    14. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    15. Frederik Noack & Marie-Catherine Riekhof & Salvatore Di Falco, 2019. "Droughts, Biodiversity, and Rural Incomes in the Tropics," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(4), pages 823-852.
    16. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    2. Charles D. Kolstad & Frances C. Moore, 2019. "Estimating the Economic Impacts of Climate Change Using Weather Observations," NBER Working Papers 25537, National Bureau of Economic Research, Inc.
    3. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    4. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    5. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    6. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    7. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    8. Díaz, Juan-José & Saldarriaga, Victor, 2023. "A drop of love? Rainfall shocks and spousal abuse: Evidence from rural Peru," Journal of Health Economics, Elsevier, vol. 89(C).
    9. Chang Cai & Sandy Dall’Erba, 2021. "On the evaluation of heterogeneous climate change impacts on US agriculture: does group membership matter?," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    10. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    11. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    12. Steven J. Dundas & Roger H. von Haefen, 2021. "The importance of data structure and nonlinearities in estimating climate impacts on outdoor recreation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2053-2075, July.
    13. Bassino, Jean-Pascal & Lagoarde-Segot, Thomas & Woitek, Ulrich, 2020. "The irreversible welfare cost of climate anomalies. Evidence from Japan (1872-1917)," Discussion Paper Series 704, Institute of Economic Research, Hitotsubashi University.
    14. Albuquerque Sant'Anna, André, 2018. "Not So Natural: Unequal Effects of Public Policies on the Occurrence of Disasters," Ecological Economics, Elsevier, vol. 152(C), pages 273-281.
    15. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    16. Themann, Michael, 2021. "At boiling point: Temperature shocks in global business groups," Ruhr Economic Papers 905, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Mullins, Jamie T. & White, Corey, 2019. "Temperature and mental health: Evidence from the spectrum of mental health outcomes," Journal of Health Economics, Elsevier, vol. 68(C).
    18. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    19. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    20. Francesca Marchetta & David E Sahn & Luca Tiberti, 2019. "The Role of Weather on Schooling and Work of Young Adults in Madagascar," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1203-1227.

    More about this item

    Keywords

    Drought; Climate Change; Agricultural Output; Brazilian Semi-Arid;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000518:018213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LACEA (email available below). General contact details of provider: https://edirc.repec.org/data/laceaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.