IDEAS home Printed from https://ideas.repec.org/p/col/000102/010032.html
   My bibliography  Save this paper

Un índice de precios espacial para la vivienda urbana en Colombia: Una aplicación con métodos de emparejamiento

Author

Listed:
  • Luis Armando Galvis
  • Bladimir Carrillo

Abstract

The formulation of an index number which allows spatial comparison of housing prices is of major relevance for economic policies related to the expenditure assigned to social housing. This study aims to compute a spatial price index for urban housing in the main Colombian cities. We used the Propensity Score Matching (PSM) method in order to simulate counterfactual scenarios, in which a referential city´s houses were identified and compared to their statistical equivalent in other cities. With this procedure we seek the comparison of each city´s estate within a homogeneous framework, assessing the price differential by using quantile hedonic regressions. Two additional applications are conducted: (i) housing comparison according to the price range (low, medium, high), (ii) examination of the average price differential change when the characteristics of the dwelling unit vary. Results indicate that Bogota has the highest housing price, followed by Cartagena and Villavicencio. Additionally, the housing price differentials across cities are sizeable and reach nearly 30%. Said differentials vary according to the type of standard housing and price ranges. RESUMEN: La formulación de un índice que permita la comparación de precios de vivienda en el espacio es relevante para aspectos económicos tales como la asignación del gasto social habitacional. Desafortunadamente en el contexto colombiano no existe un índice que permita hacer comparaciones sobre los costos de la vivienda entre diferentes regiones geográficas. El presente trabajo se propone llenar vacíos existentes en este respecto. Para este efecto se emplea el método de emparejamiento PSM (por sus siglas en inglés: Propensity Score Matching), donde se simulan escenarios contrafactuales en los que se identifican viviendas de una ciudad base, en nuestro caso Bogotá, que son estadísticamente similares a las de otras ciudades. Con dicho método se busca establecer comparaciones más homogéneas entre los inmuebles de cada ciudad al evaluar el diferencial de precios. Se realizan dos ejercicios adicionales, que consisten en: (i) comparar las viviendas según rangos de precios (bajo, medio y alto) entre las ciudades empleando regresiones hedónicas por cuantiles; (ii) examinar cómo cambia la diferencia promedio de precios cuando varía la canasta de características de la unidad habitacional. Entre los principales resultados se encuentra que Bogotá tiene el precio más alto de vivienda estándar, seguida de Cartagena y Villavicencio. En términos prácticos, las brechas de precios halladas son importantes y alcanzan cifras cercanas al 30%. Dichas brechas no son homogéneas entre diferentes clases de vivienda estándar, ni entre rangos del precio.

Suggested Citation

  • Luis Armando Galvis & Bladimir Carrillo, 2012. "Un índice de precios espacial para la vivienda urbana en Colombia: Una aplicación con métodos de emparejamiento," Documentos de Trabajo Sobre Economía Regional y Urbana 10032, Banco de la República, Economía Regional.
  • Handle: RePEc:col:000102:010032
    DOI: 10.32468/dtseru.173
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/dtseru.173
    Download Restriction: no

    File URL: https://libkey.io/10.32468/dtseru.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kiel, K.A. & Zabel, J.E., 1998. "The Impact of Neighborhood Characteristics ou House Prices: What Geographic Area Constitutes a Neighborhodd?," Papers 98-04, Wellesley College - Department of Economics.
    2. Maria Angelica Arbelaez & Roberto Steiner & Alejandro Becerra & Daniel Wills, 2011. "Housing Tenure and Housing Demand in Colombia," Research Department Publications 4736, Inter-American Development Bank, Research Department.
    3. María Angélica Arbeláez & Roberto Steiner & Alejandro Becerra & Daniel Wills, 2011. "Housing tenure and housing demand in Colombia," WORKING PAPERS SERIES. DOCUMENTOS DE TRABAJO 009067, FEDESARROLLO.
    4. Edward L. Glaeser & Joseph Gyourko & Raven E. Saks, 2006. "Urban growth and housing supply," Journal of Economic Geography, Oxford University Press, vol. 6(1), pages 71-89, January.
    5. Wilhelmsson, Mats, 2002. "Household Expenditure Patterns for Housing Attributes: A Linear Expenditure System with Hedonic Prices," Journal of Housing Economics, Elsevier, vol. 11(1), pages 75-93, March.
    6. Carlos Medina & Leonardo Morales & Jairo Nuñez, 2008. "Quality of Life in Urban Neighborhoods in Colombia:The Cases of Bogotá and Medellín," Borradores de Economia 5126, Banco de la Republica.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Patrick Bayer & Robert McMillan & Kim Rueben, 2004. "An Equilibrium Model of Sorting in an Urban Housing Market," NBER Working Papers 10865, National Bureau of Economic Research, Inc.
    9. Jorge Perdomo, 2011. "A methodological proposal to estimate changes of residential property value: case study developed in Bogota," Applied Economics Letters, Taylor & Francis Journals, vol. 18(16), pages 1577-1581.
    10. Case, Karl E & Shiller, Robert J, 1989. "The Efficiency of the Market for Single-Family Homes," American Economic Review, American Economic Association, vol. 79(1), pages 125-137, March.
    11. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    12. Zabel, Jeffrey E., 2004. "The demand for housing services," Journal of Housing Economics, Elsevier, vol. 13(1), pages 16-35, March.
    13. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    14. Diewert, W. E., 1976. "Exact and superlative index numbers," Journal of Econometrics, Elsevier, vol. 4(2), pages 115-145, May.
    15. Fontenla, Matas & Gonzalez, Fidel, 2009. "Housing demand in Mexico," Journal of Housing Economics, Elsevier, vol. 18(1), pages 1-12, March.
    16. N. Edward Coulson & Daniel P. McMillen, 2007. "The Dynamics of Intraurban Quantile House Price Indexes," Urban Studies, Urban Studies Journal Limited, vol. 44(8), pages 1517-1537, July.
    17. Dusan Paredes & Patricio Aroca, 2008. "Metodología para Estimar un Indice Regional de Costo de Vivienda en Chile," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 45(131), pages 129-143.
    18. Dusan Paredes, 2011. "A methodology to compute regional housing price index using matching estimator methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(1), pages 139-157, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raul-Tomas Mora-Garcia & Maria-Francisca Cespedes-Lopez & V. Raul Perez-Sanchez & Pablo Marti & Juan-Carlos Perez-Sanchez, 2019. "Determinants of the Price of Housing in the Province of Alicante (Spain): Analysis Using Quantile Regression," Sustainability, MDPI, vol. 11(2), pages 1-33, January.
    2. Juan Carlos Rodríguez Marín & Pedro Delgado Jaimes & Taide Botello Velasco, 2017. "Determinantes del precio de la vivienda en Bucaramanga," Revista Equidad y Desarrollo, Universidad de la Salle, issue 30, pages 39-59, December.
    3. Luis Armando Galvis, 2013. "¿El triunfo de Bogotá?: desempeno reciente de la ciudad capital," Coyuntura Económica, Fedesarrollo, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lei & Yi, Yimin, 2017. "Quantile house price indices in Beijing," Regional Science and Urban Economics, Elsevier, vol. 63(C), pages 85-96.
    2. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    3. Hill, Robert J. & Trojanek, Radoslaw, 2022. "An evaluation of competing methods for constructing house price indexes: The case of Warsaw," Land Use Policy, Elsevier, vol. 120(C).
    4. Nicodemo, Catia & Raya, Josep Maria, 2012. "Change in the distribution of house prices across Spanish cities," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 739-748.
    5. Radmila Datsenko, 2013. "House Price Dynamics : The French Case," Post-Print halshs-03373717, HAL.
    6. Bohman, Helena & Nilsson, Désirée, 2016. "The impact of regional commuter trains on property values: Price segments and income," Journal of Transport Geography, Elsevier, vol. 56(C), pages 102-109.
    7. Nicolai V. Kuminoff & V. Kerry Smith & Christopher Timmins, 2010. "The New Economics of Equilibrium Sorting and its Transformational Role for Policy Evaluation," NBER Working Papers 16349, National Bureau of Economic Research, Inc.
    8. Filali, Radhouane, 2008. "Variabilité spatiale des prix hédoniques des caractéristiques du logement: une nouvelle méthode de calcul des indices de prix spatiaux [Spatial variability of housing attribute marginal prices: est," MPRA Paper 14227, University Library of Munich, Germany.
    9. Juan Carlos Rodríguez Marín & Pedro Delgado Jaimes & Taide Botello Velasco, 2017. "Determinantes del precio de la vivienda en Bucaramanga," Revista Equidad y Desarrollo, Universidad de la Salle, issue 30, pages 39-59, December.
    10. Lopez, Esteban & Hewings, Geoffrey J.D., 2018. "Housing price indices for small spatial units," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 57-71.
    11. Liao, Wen-Chi & Wang, Xizhu, 2012. "Hedonic house prices and spatial quantile regression," Journal of Housing Economics, Elsevier, vol. 21(1), pages 16-27.
    12. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    13. Depetris-Chauvin, Emilio & Santos, Rafael J., 2018. "Unexpected guests: The impact of internal displacement inflows on rental prices in Colombian host cities," Journal of Development Economics, Elsevier, vol. 134(C), pages 289-309.
    14. Luis Armando Galvis, 2013. "¿El triunfo de Bogotá?: desempeno reciente de la ciudad capital," Coyuntura Económica, Fedesarrollo, June.
    15. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    16. Yu Jiang & H. Holly Wang & Shaosheng Jin & Michael S. Delgado, 2019. "The Promising Effect of a Green Food Label in the New Online Market," Sustainability, MDPI, vol. 11(3), pages 1-14, February.
    17. Villar, Jaume García & Raya, Josep Maria, 2015. "Use of a Gini index to examine housing price heterogeneity: A quantile approach," Journal of Housing Economics, Elsevier, vol. 29(C), pages 59-71.
    18. Víctor Iturra & Dusan Paredes, 2014. "Construction of a Spatial Housing Price Index by Estimating an Almost Ideal Demand System," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 105(3), pages 301-314, July.
    19. Dusan Paredes Araya & Victor Iturra Rivera, 2013. "Substitution bias and the construction of a spatial cost of living index," Papers in Regional Science, Wiley Blackwell, vol. 92(1), pages 103-117, March.
    20. Daniel Megía‐Cayuela, 2023. "Valuation of ticket prices for first‐division football matches in the Spanish league," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 576-594, January.

    More about this item

    Keywords

    regresión por cuantiles; Propensity Score Matching; índice de precios hedónicosde Fisher.;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000102:010032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Banco De La República - Economía Regional (email available below). General contact details of provider: https://edirc.repec.org/data/cbcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.