Advanced Search
MyIDEAS: Login

Higher Moment Estimators for Linear Regression Models With Errors in the Variables


Author Info

  • Denyse L. Dagenais
  • Marcel Dagenais
Registered author(s):


    This paper proposes instrumental variable estimators for multiple linear regression models with errors in the explanatory variables, that require no extraneous information. As is very well known, the ordinary least squares estimator (OLS), which is based on the sample moments of order two, is unbiased when there are no errors in the variables, but it becomes biased and inconsistent when there are such errors [Fuller (1987)]. In contrast, the suggested estimators are based on higher sample moments and can be considered as a special type of instrumental variable estimator. They are consistent, under quite reasonable assumptions, when there are measurement errors. While most consistent estimators based on higher moments (HM) proposed previously in the literature [Geary (1942), Drion (1951), Durbin (1954), Pal (1980)] for regressions with errors in the variables seem to be quite erratic [Kendall and Stuart (1963), Malinvaud (1978)], the suggested estimators appear to perform remarkably well in many situations. Although most data do contain errors of measurement, this fact is often ignored by the analysts and statistical procedures designed for data measured without error are applied. It is shown that ignoring the presence of even small measurement errors and using traditonal OLS estimators may lead to performing standard Student t-tests with type I errors of considerably higher sizes than intended, while this is not so with the proposed HM estimators. Our experimental findings suggest also that even if the sample is not very large, when the errors in the variables are non-negligible, our estimators do perform better than the OLS estimators in terms of root mean squared errors, when the explanatory variables are strongly correlated and the multiple correlation of the regression is high. Such situations are typical of many statistical analyses based on aggregate data. When the multiple correlation coefficient is smaller and the explanatory variables are less correlated, our HM estimators will still outperform the OLS estimator if the sample is large, even if the measurement errors are not very important. Such cases are frequently encountered in analyses of survey data. Tests for the presence of errors in the variables are also described, and the power of the tests are assessed in the Monte Carlo experiments. Nous proposons, pour les modèles de régression linéaire où les variables explicatives contiennent des erreurs de mesure, des estimateurs de variables instrumentales d'un type particulier, qui n'exigent aucune information extrinsèque. On sait que l'estimateur des moindres carrés ordinaires (MCO), qui est basé sur les moments échantillonnaux d'ordre deux, est centré lorsqu'il n'y a pas d'erreurs sur les variables0501s qu'il devient biaisé et non convergent en présence de telles erreurs [Fuller (1987)]. Par ailleurs, les estimateurs que nous suggérons sont basés sur des moments d'ordres supérieurs et peuvent être vus comme des estimateurs de variables instrumentales. Sous des hypothèses très raisonnables, ces estimateurs demeurent convergents même lorsqu'il y a des erreurs de mesure. Alors que la plupart des estimateurs convergents basés sur des moments d'ordres supérieurs (MOS) proposés antérieurement [Geary(1942), Drion(1951), Durbin (1954), Pal (1980)] pour les modèles de régression avec erreurs sur les variables, semblent très erratiques [Kendall et Stuart (1963), Malinvaud (1978)], les estimateurs que nous proposons se comportent remarquablement bien, dans un grand nombre de cas. Quoique la plupart des données contiennent des erreurs de mesure, ce fait est souvent ignoré par les analystes qui appliquent, la plupart du temps, des procédures statistiques conçues pour le traitement de données mesurées sans erreur. Nous démontrons que le fait de négliger la présence d'erreurs de mesure même relativement faibles et d'utiliser les estimateurs MCO traditionnels, peut faire en sorte que les tests de Student standards comportent des erreurs de type I dont le niveau est considérablement plus élevé que le niveau désiré, alors que ce n'est pas le cas si on utilise les estimateurs MOS proposés. Même si les échantillons ne sont pas très grands, les résultats de nos expériences suggèrent également que dans les cas où les erreurs sur les variables ne sont pas négligeables, le comportement de nos estimateurs lorsqu'on l'évalue en termes de la racine carrée des écarts quadratiques moyens, est supérieur à celui des MCO, quand les variables explicatives sont fortement corrélées et que le coefficient de corrélation multiple est élevé. Ce genre de situations est typique des analyses statistiques basées sur des données agrégées. Si le coefficient de corrélation multiple est moins élevé et que les variables explicatives sont moins corrélées, nos estimateurs MOS peuvent encore s'avérer supérieurs aux estimateurs MCO lorsque les échantillons sont suffisamment grands, et cela même si les erreurs de mesure ne sont pas aussi importantes. De tels cas se rencontrent fréquemment lorsqu'on a affaire à des données d'enquêtes. Nous décrivons également des tests d'erreurs sur les variables et nous évaluons la puissance de ces tests au moyen d'expériences de Monte-Carlo.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: no

    Bibliographic Info

    Paper provided by CIRANO in its series CIRANO Working Papers with number 95s-13.

    as in new window
    Date of creation: 01 Mar 1995
    Date of revision:
    Handle: RePEc:cir:cirwor:95s-13

    Contact details of provider:
    Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
    Phone: (514) 985-4000
    Fax: (514) 985-4039
    Web page:
    More information through EDIRC

    Related research

    Keywords: Errors in the variables; Measurement errors; Higher moment estimators; Instrumental variable estimators; Erreurs sur les variables ; Erreurs de mesure ; Variables instrumentales ; Moments d'ordres supérieurs;

    Find related papers by JEL classification:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Fomby, Thomas B. & Guilkey, David K., 1978. "On choosing the optimal level of significance for the Durbin-Watson test and the Bayesian alternative," Journal of Econometrics, Elsevier, vol. 8(2), pages 203-213, October.
    2. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-83, January.
    3. Griliches, Zvi, 1986. "Economic data issues," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 25, pages 1465-1514 Elsevier.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    5. Duncan, Greg J & Hill, Daniel H, 1985. "An Investigation of the Extent and Consequences of Measurement Error in Labor-Economic Survey Data," Journal of Labor Economics, University of Chicago Press, vol. 3(4), pages 508-32, October.
    6. J. A. Hausman, 1976. "Specification Tests in Econometrics," Working papers 185, Massachusetts Institute of Technology (MIT), Department of Economics.
    7. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    8. Mankiw, N Gregory & Romer, David & Weil, David N, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, MIT Press, vol. 107(2), pages 407-37, May.
    9. Grether, David M. & Maddala, G. S., . "Errors in Variables and Serially Correlated Disturbances in Distributed Lag Models," Working Papers 6, California Institute of Technology, Division of the Humanities and Social Sciences.
    10. Jeong, Jinook & Maddala, G S, 1991. "Measurement Errors and Tests for Rationality," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 431-39, October.
    11. Dagenais, Marcel G., 1994. "Parameter estimation in regression models with errors in the variables and autocorrelated disturbances," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 145-163.
    12. Joseph G. Altonji & Aloysius Siow, 1986. "Testing the Response of Consumption to Income Changes with (Noisy) PanelData," NBER Working Papers 2012, National Bureau of Economic Research, Inc.
    13. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    14. Aigner, Dennis J. & Hsiao, Cheng & Kapteyn, Arie & Wansbeek, Tom, 1984. "Latent variable models in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 23, pages 1321-1393 Elsevier.
    15. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-76, July.
    16. Pal, Manoranjan, 1980. "Consistent moment estimators of regression coefficients in the presence of errors in variables," Journal of Econometrics, Elsevier, vol. 14(3), pages 349-364, December.
    17. Dagenais, M.G. & Dagenais, D.L., 1994. "GMM Estimators for Linear Regression Models with Errors in the Variables," Cahiers de recherche 9404, Universite de Montreal, Departement de sciences economiques.
    18. Avery, Robert B & Kennickell, Arthur B, 1991. "Household Saving in the U.S," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 37(4), pages 409-32, December.
    19. John Bound & Alan B. Krueger, 1989. "The Extent of Measurement Error In Longitudinal Earnings Data: Do Two Wrongs Make A Right?," NBER Working Papers 2885, National Bureau of Economic Research, Inc.
    20. Dagenais, M.G. & Dagenais, D.L., 1994. "GMM Estimators for Linear Regression Models with Errors in the Variables," Cahiers de recherche 9404, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    21. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-50, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. repec:fth:prinin:350 is not listed on IDEAS


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:95s-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.