Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimating Fully Observed Recursive Mixed-Process Models with cmp

Contents:

Author Info

  • David Roodman

    ()

Abstract

At the heart of many econometric models is a linear function and a normal error. Examples include the classical small-sample linear regression model and the probit, ordered probit, multinomial probit, Tobit, interval regression, and truncateddistribution regression models. Because the normal distribution has a natural multidimensional generalization, such models can be combined into multi-equation systems in which the errors share a multivariate normal distribution. The literature has historically focused on multi-stage procedures for estimating mixed models, which are more efficient computationally, if less so statistically, than maximum likelihood (ML). But faster computers and simulated likelihood methods such as the Geweke, Hajivassiliou, and Keane (GHK) algorithm for estimating higherdimensional cumulative normal distributions have made direct ML estimation practical. ML also facilitates a generalization to switching, selection, and other models in which the number and types of equations vary by observation. The Stata module cmp fits Seemingly Unrelated Regressions (SUR) models of this broad family. Its estimator is also consistent for recursive systems in which all endogenous variables appear on the right-hand-sides as observed. If all the equations are structural, then estimation is full-information maximum likelihood (FIML). If only the final stage or stages are, then it is limited-information maximum likelihood (LIML). cmp can mimic a dozen built-in Stata commands and several user-written ones. It is also appropriate for a panoply of models previously hard to estimate. Heteroskedasticity, however, can render it inconsistent. This paper explains the theory and implementation of cmp and of a related Mata function, ghk2(), that implements the GHK algorithm.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cgdev.org/content/publications/detail/1421516
Download Restriction: no

Bibliographic Info

Paper provided by Center for Global Development in its series Working Papers with number 168.

as in new window
Length: 56 pages
Date of creation: Mar 2009
Date of revision:
Handle: RePEc:cgd:wpaper:168

Contact details of provider:
Web page: http://www.cgdev.org

Related research

Keywords: econometrics; cmp; GHK algorithm; seemingly unrelated regressions;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Pagan, Adrian, 1979. "Some consequences of viewing LIML as an iterated Aitken estimator," Economics Letters, Elsevier, vol. 3(4), pages 369-372.
  2. Richard Gates, 2006. "A Mata Geweke–Hajivassiliou–Keane multivariate normal simulator," Stata Journal, StataCorp LP, vol. 6(2), pages 190-213, June.
  3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492 National Bureau of Economic Research, Inc.
  4. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
  5. V A Hajivassiliou & DL McFadden, 1997. "The Method of Simulated Scores for the Estimation of LDV Models," STICERD - Econometrics Paper Series /1997/328, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  6. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
  7. Wilde, Joachim, 2000. "Identification of multiple equation probit models with endogenous dummy regressors," Economics Letters, Elsevier, vol. 69(3), pages 309-312, December.
  8. David M. Drukker & Richard Gates, 2006. "Generating Halton sequences using Mata," Stata Journal, StataCorp LP, vol. 6(2), pages 214-228, June.
  9. Alfonso Miranda & Sophia Rabe-Hesketh, 2005. "Maximum Likelihood Estimation of Endogenous Switching And Sample Selection Models for Binary, Count, And Ordinal Variables," Keele Economics Research Papers KERP 2005/14, Centre for Economic Research, Keele University.
  10. Mark M. Pitt & Shahidur R. Khandker, 1998. "The Impact of Group-Based Credit Programs on Poor Households in Bangladesh: Does the Gender of Participants Matter?," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 958-996, October.
  11. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
  12. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
  13. Michael Lokshin & Roger B. Newson, 2011. "Impact of interventions on discrete outcomes: Maximum likelihood estimation of the binary choice models with binary endogenous regressors," Stata Journal, StataCorp LP, vol. 11(3), pages 368-385, September.
  14. Richard Chiburis & Michael Lokshin, 2007. "Maximum likelihood and two-step estimation of an ordered-probit selection model," Stata Journal, StataCorp LP, vol. 7(2), pages 167-182, June.
  15. James J. Heckman, 1977. "Dummy Endogenous Variables in a Simultaneous Equation System," NBER Working Papers 0177, National Bureau of Economic Research, Inc.
  16. Amemiya, Takeshi, 1974. "Multivariate Regression and Simultaneous Equation Models when the Dependent Variables Are Truncated Normal," Econometrica, Econometric Society, vol. 42(6), pages 999-1012, November.
  17. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, vol. 3(3), pages 278-294, September.
  18. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-85, May.
  19. William J. Burke, 2009. "Fitting and interpreting Cragg's tobit alternative using Stata," Stata Journal, StataCorp LP, vol. 9(4), pages 584-592, December.
  20. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
  21. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
  22. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
  23. G. S. Maddala & Lung-Fei Lee, 1976. "Recursive Models with Qualitative Endogenous Variables," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 525-545 National Bureau of Economic Research, Inc.
  24. William H. Greene, 1998. "Gender Economics Courses in Liberal Arts Colleges: Further Results," The Journal of Economic Education, Taylor & Francis Journals, vol. 29(4), pages 291-300, January.
  25. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
  26. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cgd:wpaper:168. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Roodman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.