Advanced Search
MyIDEAS: Login

Trip Scheduling and Economic Analysis of Transportation Policies

Contents:

Author Info

  • Chu, Xeuhao
Registered author(s):

    Abstract

    This dissertation seeks to understand how urban commuters adjust their schedules and modes to congestion, as well policy implications of this adjustment. An equilibrium simulation model of commuting traffic on a hypothetical, urban highway corridor is developed. The demand side is a discrete choice model of mode and time of day, estimated with data from the San Francisco Bay Area. The supply side is a speed-flow function that predicts travel time from flows leaving the corridor. The research has three objectives: to simulate the effects of capacity expansion, optimal toll, and six other pricing policies; to test hypotheses relating to schedule shifts in response to congestion and policy changes; and to estimate biases in policy effects when schedule shifts are ignored. An iterative procedure is developed to compute optimal tolls that vary with time of day. Policies are examined from five perspectives: welfare (consumer surplus, toll revenue, and total benefits), peaking (traffic counts and share in the peak 15-minute period), congestion (average and peak 15-minute travel delays), schedule delay (average variable schedule delay), and mode mix (mode shares, average occupancy, and total traffic). Five results emerge. First, although an optimal toll can achieve substantial benefits, savings in travel delay are accompanied by increases in schedule delay. Second, a toll equal to the marginal social externalities of an additional trip at different times of day at a base case can achieve benefits equivalent to those of optimal toll, which is equal to the marginal social externalities of an additional trip at different times of day at a social optimum. Third, schedule delay has variable and constant components. The constant component is the equilibrium level at a base case when travel is free-flow. The variable component changes with congestion and policies. Fourth, urban commuters shift their schedules in response to congestion and policy changes. Heavy congestion forces people away from the peak; capacity expansion attracts people back to the peak; an optimal toll discourages people driving alone in the peak. Fifth, the benefits of capacity expansion and an optimal toll are substantially overestimated if trip scheduling is ignored.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.escholarship.org/uc/item/36p986pv.pdf;origin=repeccitec
    Download Restriction: no

    Bibliographic Info

    Paper provided by University of California Transportation Center in its series University of California Transportation Center, Working Papers with number qt36p986pv.

    as in new window
    Length:
    Date of creation: 01 Jan 1993
    Date of revision:
    Handle: RePEc:cdl:uctcwp:qt36p986pv

    Contact details of provider:
    Postal: 109 McLaughlin Hall, Mail Code 1720, Berkeley, CA 94720-1720
    Phone: 510-642-3585
    Fax: 510-643-3955
    Email:
    Web page: http://www.escholarship.org/repec/uctc/
    More information through EDIRC

    Related research

    Keywords: Social and Behavioral Sciences;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chu, Xuehao, 1999. "Alternative congestion pricing schedules," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 697-722, November.
    2. Small, K. & Noland, R. & Koskenoja, P., 1995. "Socio-economic Attributes And Impacts Of Travel Reliability: A Stated Preference Approach," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt82n2w53k, Institute of Transportation Studies, UC Berkeley.
    3. Noland, Robert B. & Small, Kenneth A. & Koskenoja, Pia Maria & Chu, Xuehao, 1998. "Simulating travel reliability," Regional Science and Urban Economics, Elsevier, vol. 28(5), pages 535-564, September.
    4. Khattak, Asad J. & De Palma, André, 1997. "The impact of adverse weather conditions on the propensity to change travel decisions: A survey of Brussels commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 181-203, May.
    5. André De palma & Cédric Fontan & Asad J. Khattak, 2004. "Analyzing work departure time variability in Brussels," Reflets et perspectives de la vie économique, De Boeck Université, vol. 0(4), pages 89-110.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt36p986pv. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.