IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt9dm7v0cn.html
   My bibliography  Save this paper

Discretization and Validation of the Continuum Approximation Scheme for Terminal System Design

Author

Listed:
  • Ouyang, Yanfeng
  • Daganzo, Carlos F.

Abstract

This paper proposes an algorithm that automatically translates the "continuum approximation" (CA) recipes for location problems into discrete designs. It is applied to terminal systems but can also be used for other logistics problems. The study also systematically compares the logistics costs predicted by the CA approach with the actual costs for discrete designs obtained with the automated procedure. Results show that the algorithm systematically finds a practical set of discrete terminal locations with a cost very close to that predicted. The paper also gives conditions under which the CA cost formulae are a tight lower bound for the exact minimal costs.

Suggested Citation

  • Ouyang, Yanfeng & Daganzo, Carlos F., 2003. "Discretization and Validation of the Continuum Approximation Scheme for Terminal System Design," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9dm7v0cn, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt9dm7v0cn
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9dm7v0cn.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. F. Newell, 1971. "Dispatching Policies for a Transportation Route," Transportation Science, INFORMS, vol. 5(1), pages 91-105, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Gugat & Barbara Pfeiffer, 2007. "Weber problems with mixed distances and regional demand," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 419-449, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    2. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "Scheduling multimodal transportation systems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 603-615, June.
    4. Yanfeng Ouyang & Carlos F. Daganzo, 2006. "Discretization and Validation of the Continuum Approximation Scheme for Terminal System Design," Transportation Science, INFORMS, vol. 40(1), pages 89-98, February.
    5. Edward Kim, M. & Schonfeld, Paul & Roche, Austin & Raleigh, Chelsie, 2022. "Optimal service zones and frequencies for flexible-route freight deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 182-199.
    6. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    7. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    8. Ouyang, Yanfeng & Wang, Zhaodong & Yang, Hai, 2015. "Facility location design under continuous traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 18-33.
    9. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Larrain, Homero & Muñoz, Juan Carlos & Giesen, Ricardo, 2015. "Generation and design heuristics for zonal express services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 201-212.
    11. Asplund, Disa, 2021. "Optimal frequency of public transport in a small city: examination of a simple method," Working Papers 2021:9, Swedish National Road & Transport Research Institute (VTI).
    12. Zhang, Junlin & Lindsey, Robin & Yang, Hai, 2018. "Public transit service frequency and fares with heterogeneous users under monopoly and alternative regulatory policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 190-208.
    13. Weiya Chen & Xin Liu & Dingfang Chen & Xin Pan, 2019. "Setting Headways on a Bus Route under Uncertain Conditions," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    14. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    15. Wang, Xiaotian & Wang, Xin, 2019. "Flexible parking reservation system and pricing: A continuum approximation approach," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 408-434.
    16. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    17. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    18. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    19. Yun Bai & Xiaopeng Li & Fan Peng & Xin Wang & Yanfeng Ouyang, 2015. "Effects of Disruption Risks on Biorefinery Location Design," Energies, MDPI, vol. 8(2), pages 1-19, February.
    20. Yan, Shangyao & Chen, Hao-Lei, 2002. "A scheduling model and a solution algorithm for inter-city bus carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 805-825, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt9dm7v0cn. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.