IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v152y2021ics1366554521001551.html
   My bibliography  Save this article

Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method

Author

Listed:
  • Chen, Zhiwei
  • Li, Xiaopeng

Abstract

Jointly designing vehicle dispatch headway and capacity is a relatively new solution to the demand–supply asymmetry in urban mass transportation studies. This paper studies a new problem of this kind where a transportation corridor operates with modular autonomous vehicles (MAV) enabling station-wise docking; i.e., vehicles can change their formations (or capacity) at any station along the corridor. We formulate the problem into a compact mixed integer linear programming model where the passenger boarding order is explicitly modeled. Due to the multiple station system structure and the station-wise docking operation, the solution space of the model increases rapidly with the instance size, making it very challenging to solve the model with existing commercial solvers. To improve the solution efficiency, we design a customized branch and bound (B&B) algorithm with theoretical properties of the investigated problem. These properties offer upper and lower bounds to the optimal vehicle formation, reveal the relationship between the passenger queue and vehicle dispatch headway, and identify a dominance rule between any two feasible solutions to the investigated problem. They greatly reduce the number of nodes in the B&B tree that would grow dramatically without these properties. Further, the lower and upper bounds to the objective value at each node of the B&B tree are computed analytically, allowing us to search through the solution space very quickly. Consequently, the computation speed of the B&B algorithm is greatly improved. With numerical experiments, we show that the customized B&B algorithm outperforms a state-of-the-art commercial solver, Gurobi, and solves relatively large instances in real-world applications efficiently. The station-wise docking operation is shown to reduce system costs compared with existing fixed capacity operation. Further, its performance is affected by system parameters related to the vehicle operational cost and passenger waiting cost. Overall, this study contributes to the literature by extending the urban mass transportation design methodology from traditional fixed capacity design to the MAV-based station-wise docking design under various operational factors (e.g., minimum dispatch headway). The algorithm proposed can be used as a benchmark to verify the solution accuracy and computation performance for research efforts that aim to develop other solution algorithms for the investigated problem.

Suggested Citation

  • Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:transe:v:152:y:2021:i:c:s1366554521001551
    DOI: 10.1016/j.tre.2021.102388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    2. G. F. Newell, 1971. "Dispatching Policies for a Transportation Route," Transportation Science, INFORMS, vol. 5(1), pages 91-105, February.
    3. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    4. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    5. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    6. Mandl, Christoph E., 1980. "Evaluation and optimization of urban public transportation networks," European Journal of Operational Research, Elsevier, vol. 5(6), pages 396-404, December.
    7. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2019. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 1-19.
    8. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    9. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    10. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    11. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, December.
    12. Avishai (Avi) Ceder & Stephan Hassold & Christopher Dunlop & Iris Chen, 2013. "Improving urban public transport service using new timetabling strategies with different vehicle sizes," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(2), pages 239-258, July.
    13. Barrena, Eva & Canca, David & Coelho, Leandro C. & Laporte, Gilbert, 2014. "Single-line rail rapid transit timetabling under dynamic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 134-150.
    14. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    15. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    4. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    5. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Zhenyu & Han, Baoming & Li, Dewei & Ning, Shangbin & Yang, Ruixia & Yin, Yonghao, 2021. "Train timetabling in rail transit network under uncertain and dynamic demand using Advanced and Adaptive NSGA-II," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 65-99.
    2. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    3. Lu, Yahan & Yang, Lixing & Yang, Hai & Zhou, Housheng & Gao, Ziyou, 2023. "Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 27-55.
    4. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    5. Sadrani, Mohammad & Tirachini, Alejandro & Antoniou, Constantinos, 2022. "Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches," European Journal of Operational Research, Elsevier, vol. 299(1), pages 263-282.
    6. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2019. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 1-19.
    7. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    9. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    10. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    11. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    12. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    13. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    14. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    15. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    16. Shuo Zhao & Jinfei Wu & Zhenyi Li & Ge Meng, 2022. "Train Operational Plan Optimization for Urban Rail Transit Lines Considering Circulation Balance," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    17. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    18. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    19. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    20. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:152:y:2021:i:c:s1366554521001551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.