IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2823-d232124.html
   My bibliography  Save this article

Setting Headways on a Bus Route under Uncertain Conditions

Author

Listed:
  • Weiya Chen

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Xin Liu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Dingfang Chen

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Xin Pan

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

Urban public transport is a sustainable transportation strategy. Promoting public transport is an important means of urban transport sustainable development. Reasonable operation scheduling can increase the attractiveness of public transit systems and be conducive to the sustainability of transportation systems. Setting headways on a bus route is the key work of bus scheduling. For the refined management requirements of bus scheduling, this paper comprehensively considers the influence of three uncertainties on the bus route headway: passenger demand elasticity, which is an elasticity with respect to the supply of service, the randomness of the bus travel time between bus stops, and the abandoned passengers flow. A bus route headway allocation model is established. Considering the attractiveness of bus traveling and the interests of passengers, the objective functions are the maximum number of passengers waiting for the bus at each stop and the minimum number of passengers who fail to board. An enumeration combining a recursive algorithm under Monte Carlo random simulation conditions is designed to solve the problem. A comparison of the optimal bus departure interval (headway of the origin stop) under different conditions is studied using a numerical case. Under the same conditions, the results show that the model proposed in this paper can reduce the passengers waiting time and attract more passengers traveling by bus and it also meets the goal of sustainable public transport well. These findings are significant references for optimizing bus operations considering these uncertain factors.

Suggested Citation

  • Weiya Chen & Xin Liu & Dingfang Chen & Xin Pan, 2019. "Setting Headways on a Bus Route under Uncertain Conditions," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2823-:d:232124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. F. Newell, 1971. "Dispatching Policies for a Transportation Route," Transportation Science, INFORMS, vol. 5(1), pages 91-105, February.
    2. Hadas, Yuval & Shnaiderman, Matan, 2012. "Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1068-1084.
    3. Rabi G. Mishalani & Mark R. McCord & Stacey Forman, 2008. "Schedule-Based and Autoregressive Bus Running Time Modeling in the Presence of Driver-Bus Heterogeneity," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 301-317, Springer.
    4. Han, Anthony F. & Wilson, Nigel H. M., 1982. "The allocation of buses in heavily utilized networks with overlapping routes," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 221-232, June.
    5. Yulin Liu & Jonathan Bunker & Luis Ferreira, 2010. "Transit Users’ Route‐Choice Modelling in Transit Assignment: A Review," Transport Reviews, Taylor & Francis Journals, vol. 30(6), pages 753-769, March.
    6. Verbas, İ. Ömer & Mahmassani, Hani S., 2015. "Exploring trade-offs in frequency allocation in a transit network using bus route patterns: Methodology and application to large-scale urban systems," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 577-595.
    7. Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
    8. Wagenaar, Joris & Kroon, Leo & Fragkos, Ioannis, 2017. "Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 140-161.
    9. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    10. Sharma, R. R. & Rai, R. C. & Mishra, A., 1993. "Optimal bus services on express basis in the case of balking and reneging," European Journal of Operational Research, Elsevier, vol. 66(1), pages 113-123, April.
    11. Lam, W. H. K. & Gao, Z. Y. & Chan, K. S. & Yang, H., 1999. "A stochastic user equilibrium assignment model for congested transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 351-368, June.
    12. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    13. Delle Site, Paolo & Filippi, Francesco, 1998. "Service optimization for bus corridors with short-turn strategies and variable vehicle size," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 19-38, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Gong & Yinzhen Li & Dejie Xu, 2019. "Combinational Scheduling Model Considering Multiple Vehicle Sizes," Sustainability, MDPI, vol. 11(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    2. Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
    3. Yuan Liu & Heshan Zhang & Tao Xu & Yaping Chen, 2022. "A Heuristic Algorithm Based on Travel Demand for Transit Network Design," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    4. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    5. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    6. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    7. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    8. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.
    9. Gkiotsalitis, K. & Schmidt, M.E. & van der Hurk, E., 2021. "Subline frequency setting for autonomous minibusses under demand uncertainty," ERIM Report Series Research in Management ERS-2021-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    11. Høyem, Harald & Odeck, James, 2020. "Optimal public transit frequency under stochastic demand and fixed vehicle size: Application in the Norwegian car ferry sector," Research in Transportation Economics, Elsevier, vol. 82(C).
    12. Li, Changle & Ma, Jiao & Luan, Tom H. & Zhou, Xun & Xiong, Lei, 2018. "An incentive-based optimizing strategy of service frequency for an urban rail transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 106-122.
    13. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    14. Yan, Shangyao & Chen, Hao-Lei, 2002. "A scheduling model and a solution algorithm for inter-city bus carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 805-825, November.
    15. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    16. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    17. An, Qinhe & Fu, Xiao & Huang, Di & Cheng, Qixiu & Liu, Zhiyuan, 2020. "Analysis of adding-runs strategy for peak-hour regular bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    18. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    19. Di Yao & Liqun Xu & Jinpei Li, 2019. "Evaluating the Performance of Public Transit Systems: A Case Study of Eleven Cities in China," Sustainability, MDPI, vol. 11(13), pages 1-21, June.
    20. Hatzenbühler, Jonas & Cats, Oded & Jenelius, Erik, 2020. "Transitioning towards the deployment of line-based autonomous buses: Consequences for service frequency and vehicle capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 491-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2823-:d:232124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.