IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1908.html
   My bibliography  Save this paper

A ReMeDI for Microstructure Noise

Author

Listed:
  • Merrick Li, Z.
  • Linton, O.

Abstract

We introduce the Realized moMents of Disjoint Increments (ReMeDI) paradigm to measure microstructure noise (the deviation of the observed asset prices from the fundamental values caused by market imperfections). We propose consistent estimators of arbitrary moments of the microstructure noise process based on highfrequency data, where the noise process could be serially dependent, endogenous, and nonstationary. We characterize the limit distributions of the proposed estimators and construct confidence intervals under infill asymptotics. Our simulation and empirical studies show that the ReMeDI approach is very effective to measure the scale and the serial dependence of microstructure noise. Moreover, the estimators are quite robust to model specifications, sample sizes and data frequencies.

Suggested Citation

  • Merrick Li, Z. & Linton, O., 2019. "A ReMeDI for Microstructure Noise," Cambridge Working Papers in Economics 1908, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1908
    Note: obl20, ml882
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1908.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    2. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    3. Todorov, Viktor, 2013. "Power variation from second order differences for pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2829-2850.
    4. Yingying Li & Per A. Mykland, 2015. "Rounding Errors and Volatility Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 478-504.
    5. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    6. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    7. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
    8. Parlour, Christine A, 1998. "Price Dynamics in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 789-816.
    9. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    10. Hasbrouck, Joel & Ho, Thomas S Y, 1987. "Order Arrival, Quote Behavior, and the Return-Generating Process," Journal of Finance, American Finance Association, vol. 42(4), pages 1035-1048, September.
    11. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    12. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    13. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    14. Andreas Park & Hamid Sabourian, 2011. "Herding and Contrarian Behavior in Financial Markets," Econometrica, Econometric Society, vol. 79(4), pages 973-1026, July.
    15. Jean Jacod & Yingying Li & Xinghua Zheng, 2017. "Statistical Properties of Microstructure Noise," Econometrica, Econometric Society, vol. 85, pages 1133-1174, July.
    16. Hasbrouck, Joel, 2007. "Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading," OUP Catalogue, Oxford University Press, number 9780195301649.
    17. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
    18. Jia Li, 2013. "Robust Estimation and Inference for Jumps in Noisy High Frequency Data: A Local‐to‐Continuity Theory for the Pre‐Averaging Method," Econometrica, Econometric Society, vol. 81(4), pages 1673-1693, July.
    19. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabil Bouamara & Kris Boudt & S'ebastien Laurent & Christopher J. Neely, 2023. "Sluggish news reactions: A combinatorial approach for synchronizing stock jumps," Papers 2309.15705, arXiv.org.
    2. Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022. "Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    4. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Econometrics, MDPI, vol. 11(3), pages 1-36, August.
    5. Markus Bibinger & Nikolaus Hautsch & Alexander Ristig, 2024. "Jump detection in high-frequency order prices," Papers 2403.00819, arXiv.org.
    6. Andersen, Torben G. & Riva, Raul & Thyrsgaard, Martin & Todorov, Viktor, 2023. "Intraday cross-sectional distributions of systematic risk," Journal of Econometrics, Elsevier, vol. 235(2), pages 1394-1418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    2. Li, M. Z. & Linton, O., 2021. "Robust Estimation of Integrated and Spot Volatility," Cambridge Working Papers in Economics 2115, Faculty of Economics, University of Cambridge.
    3. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    4. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    5. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    6. Li, Yingying & Zhang, Zhiyuan & Li, Yichu, 2018. "A unified approach to volatility estimation in the presence of both rounding and random market microstructure noise," Journal of Econometrics, Elsevier, vol. 203(2), pages 187-222.
    7. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    8. Andersen, Torben G. & Archakov, Ilya & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2022. "Local mispricing and microstructural noise: A parametric perspective," Journal of Econometrics, Elsevier, vol. 230(2), pages 510-534.
    9. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    10. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    11. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    12. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    13. Peter C. B. Phillips & Jun Yu, 2023. "Information loss in volatility measurement with flat price trading," Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
    14. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    15. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    16. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
    17. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    18. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.
    19. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    20. Roberto Pascual & David Veredas, 2010. "Does the Open Limit Order Book Matter in Explaining Informational Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 57-87, Winter.

    More about this item

    Keywords

    Microstructure noise; semimartingale; serial dependence; stable convergence; mixing sequence; infill asymptotics; finite sample bias;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.