Advanced Search
MyIDEAS: Login

A strategy to reduce the count of moment conditions in panel data GMM

Contents:

Author Info

  • M. E. Bontempi
  • I. Mammi

Abstract

The problem of instrument proliferation and its consequences (overfitting of endogenous variables, bias of estimates, weakening of Sargan/Hansen test) are well known. The literature provides little guidance on how many instruments is too many. It is common practice to report the instrument count and to test the sensitivity of results to the use of more or fewer instruments. Strategies to alleviate the instrument proliferation problem are the lag-depth truncation and/or the collapse of the instrument set (the latter being an horizontal squeezing of the instrument matrix). However, such strategies involve either a certain degree of arbitrariness (based on the ability and the experience of the researcher) or of trust in the restrictions implicitly imposed (and hence untestable) on the instrument matrix. The aim of the paper is to introduce a new strategy to reduce the instrument count. The technique we propose is statistically founded and purely datadriven and, as such, it can be considered a sort of benchmark solution to the problem of instrument proliferation. We apply the principal component analysis (PCA) on the instrument matrix and exploit the PCA scores as the instrument set for the panel generalized method-of-moments (GMM)estimation. Through extensive Monte Carlo simulations, under alternative characteristics of persistence of the endogenous variables, we compare the performance of the Difference GMM, Level and System GMM estimators when lag truncation, collapsing and our principal component-based IV reduction (PCIVR henceforth) are applied to the instrument set. The same comparison has been carried out with two empirical applications on real data: the first replicates the estimates of Blundell and Bond [1998]; the second exploits a new and large panel data-set in order to assess the role of tangible and intangible capital on productivity. Results show that PCIVR is a promising strategy of instrument reduction.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www2.dse.unibo.it/wp/WP843.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Dipartimento Scienze Economiche, Universita' di Bologna in its series Working Papers with number wp843.

as in new window
Length:
Date of creation: Sep 2012
Date of revision:
Handle: RePEc:bol:bodewp:wp843

Contact details of provider:
Postal: Piazza Scaravilli, 2, and Strada Maggiore, 45, 40125 Bologna
Phone: +39 051 209 8019 and 2600
Fax: +39 051 209 8040 and 2664
Web page: http://www.dse.unibo.it
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, 01.
  2. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2004. "The generalised dynamic factor model: consistency and rates," ULB Institutional Repository 2013/10133, ULB -- Universite Libre de Bruxelles.
  3. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
  4. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
  5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
  6. Blundell, R. & Bond, S., 1995. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models," Economics Papers 104, Economics Group, Nuffield College, University of Oxford.
  7. Ziliak, James P, 1997. "Efficient Estimation with Panel Data When Instruments Are Predetermined: An Empirical Comparison of Moment-Condition Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 419-31, October.
  8. Maria Elena Bontempi & Jacques Mairesse, 2008. "Intangible Capital and Productivity: An Exploration on a Panel of Italian Manufacturing Firms," NBER Working Papers 14108, National Bureau of Economic Research, Inc.
  9. Arellano, Manuel & Bond, Stephen, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Wiley Blackwell, vol. 58(2), pages 277-97, April.
  10. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
  11. Hayakawa, Kazuhiko, 2009. "On the effect of mean-nonstationarity in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 153(2), pages 133-135, December.
  12. Alastair Hall & Fernanda Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287.
  13. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  14. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1577-1606, December.
  15. Jan J. J. Groen & George Kapetanios, 2009. "Parsimonious estimation with many instruments," Staff Reports 386, Federal Reserve Bank of New York.
  16. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
  17. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  18. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  19. van Ark, Bart, 1998. "Productivity," Journal of the Japanese and International Economies, Elsevier, vol. 12(2), pages 171-174, June.
  20. Bowsher, Clive G., 2002. "On testing overidentifying restrictions in dynamic panel data models," Economics Letters, Elsevier, vol. 77(2), pages 211-220, October.
  21. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-26, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Maria Elena Bontempi, 2013. "The Istat MeMo-It Macroeconometric Model: comments and suggestions for possible extensions," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(1), pages 47-56.
  2. Michal Brzezinski, 2013. "Income polarization and economic growth," National Bank of Poland Working Papers 147, National Bank of Poland, Economic Institute.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bol:bodewp:wp843. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Luca Miselli).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.