Advanced Search
MyIDEAS: Login

A Consistent Method for the Selection of Relevant Instruments

Contents:

Author Info

  • Alastair Hall
  • Fernanda Peixe

Abstract

In many applications, a researcher must select an instrument vector from a candidate set of instruments. If the ultimate objective is to perform inference about the unknown parameters using conventional asymptotic theory, then we argue that it is desirable for the chosen instrument vector to satisfy four conditions which we refer to as orthogonality, identification, efficiency, and non-redundancy. It is impossible to verify a priori which elements of the candidate set satisfy these conditions; this can only be done using the data. However, once the data are used in this fashion it is important that the selection process does not contaminate the limiting distribution of the parameter estimator. We refer to this requirement as the inference condition. In a recent paper, Andrews [[Andrews, D. W. K. (1999)]. Consistent moment selection procedures for generalized method of moments estimation. Econometrica67:543-564] has proposed a method of moment selection based on an information criterion involving the overidentifying restrictions test. This method can be shown to select an instrument vector which satisfies the orthogonality condition with probability one in the limit. In this paper, we consider the problem of instrument selection based on a combination of the efficiency and non-redundancy conditions which we refer to as the relevance condition. It is shown that, within a particular class of models, certain canonical correlations form the natural metric for relevancy, and this leads us to propose a canonical correlations information criterion (CCIC) for instrument selection. We establish conditions under which our method satisfies the inference condition. We also consider the properties of an instrument selection method based on the sequential application of [Andrews, D. W. K. (1999)]. Consistent moment selection procedures for generalized method of moments estimation. Econometrica67:543-564 method and CCIC.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120024752
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 22 (2003)
Issue (Month): 3 ()
Pages: 269-287

as in new window
Handle: RePEc:taf:emetrv:v:22:y:2003:i:3:p:269-287

Contact details of provider:
Web page: http://www.tandfonline.com/LECR20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/LECR20

Related research

Keywords: Instrumental variables estimation; Instrument selection; Information criterion; Canonical correlations;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
  2. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-52, July.
  3. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
  4. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-98, May.
  5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  6. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-86, September.
  7. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  8. Breusch, Trevor & Qian, Hailong & Schmidt, Peter & Wyhowski, Donald, 1999. "Redundancy of moment conditions," Journal of Econometrics, Elsevier, vol. 91(1), pages 89-111, July.
  9. James H. Stock & Jonathan Wright, 1996. "Asymptotics for GMM Estimators with Weak Instruments," NBER Technical Working Papers 0198, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:22:y:2003:i:3:p:269-287. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.