IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/07-15.html
   My bibliography  Save this paper

Semiparametric dynamic portfolio choice with multiple conditioning variables

Author

Listed:
  • Jia Chen
  • Degui Li
  • Oliver Linton
  • Zudi Lu

Abstract

Dynamic portfolio choice has been a central and essential objective for institutional investors in active asset management. In this paper, we study the dynamic portfolio choice depending on multiple conditioning variables, where the number of the conditioning variables can be either fixed or diverging to infinity at certain polynomial rate in comparison with the sample size. We propose a novel data-driven method to estimate the nonparametric optimal portfolio choice, motivated by the model averaging marginal regression approach suggested by Li, Linton and Lu (2014). Specifically, in order to avoid curse of dimensionality associated with the problem and to make it practically implementable, we first estimate the optimal portfolio choice by maximising the conditional utility function for each individual conditioning variable, and then construct the dynamic optimal portfolio choice through the weighted average of the marginal optimal portfolio across all the conditioning variables. Under some mild regularity conditions, we have established the large sample properties for the developed portfolio choice procedure. Both simulation studies and empirical application well demonstrate the performance of the proposed methodology with finite sample and real data.

Suggested Citation

  • Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers 07/15, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:07/15
    DOI: 10.1920/wp.cem.2015.0715
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0715.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2015.0715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    2. Back, Kerry, 2010. "Asset Pricing and Portfolio Choice Theory," OUP Catalogue, Oxford University Press, number 9780195380613.
    3. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Campbell, John Y, 1996. "Understanding Risk and Return," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 298-345, April.
    6. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    7. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    8. Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
    9. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    10. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    11. Michael W. Brandt, 1999. "Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach," Journal of Finance, American Finance Association, vol. 54(5), pages 1609-1645, October.
    12. Fama, Eugene F, 1970. "Multiperiod Consumption-Investment Decisions," American Economic Review, American Economic Association, vol. 60(1), pages 163-174, March.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    14. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Model Averaging of Ultra-High Dimensional Time Series," Discussion Papers 15/18, Department of Economics, University of York.
    2. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    3. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    4. De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    2. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    3. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    4. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    5. Gruszka, Jarosław & Szwabiński, Janusz, 2020. "Best portfolio management strategies for synthetic and real assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2005. "Portfolio Choice over the Life-Cycle in the Presence of 'Trickle Down' Labor Income," NBER Working Papers 11247, National Bureau of Economic Research, Inc.
    7. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    8. Mei, Bin, 2015. "Illiquidity and risk of commercial timberland assets in the United States," Journal of Forest Economics, Elsevier, vol. 21(2), pages 67-78.
    9. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    10. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    11. Benjamin M. Friedman, 1980. "The Effect of Shifting Wealth Ownership on the Term Structure of Interest Rates," NBER Working Papers 0239, National Bureau of Economic Research, Inc.
    12. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    13. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    14. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    15. Luca Benzoni & Pierre Collin‐Dufresne & Robert S. Goldstein, 2007. "Portfolio Choice over the Life‐Cycle when the Stock and Labor Markets Are Cointegrated," Journal of Finance, American Finance Association, vol. 62(5), pages 2123-2167, October.
    16. Joseph Friedman & Herbert E Phillips, 2010. "The Portfolio Implications of Adding Social Security Private Account Options to Ongoing Investments," DETU Working Papers 1004, Department of Economics, Temple University.
    17. John Y. Campbell & João F. Cocco & Francisco J. Gomes & Pascal J. Maenhout, 2001. "Investing Retirement Wealth: A Life-Cycle Model," NBER Chapters, in: Risk Aspects of Investment-Based Social Security Reform, pages 439-482, National Bureau of Economic Research, Inc.
    18. Jules H. van Binsbergen & Michael W. Brandt, 2007. "Optimal Asset Allocation in Asset Liability Management," NBER Working Papers 12970, National Bureau of Economic Research, Inc.
    19. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    20. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:07/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.