IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.13777.html
   My bibliography  Save this paper

The Short-Term Predictability of Returns in Order Book Markets: a Deep Learning Perspective

Author

Listed:
  • Lorenzo Lucchese
  • Mikko Pakkanen
  • Almut Veraart

Abstract

In this paper, we conduct a systematic large-scale analysis of order book-driven predictability in high-frequency returns by leveraging deep learning techniques. First, we introduce a new and robust representation of the order book, the volume representation. Next, we carry out an extensive empirical experiment to address various questions regarding predictability. We investigate if and how far ahead there is predictability, the importance of a robust data representation, the advantages of multi-horizon modeling, and the presence of universal trading patterns. We use model confidence sets, which provide a formalized statistical inference framework particularly well suited to answer these questions. Our findings show that at high frequencies predictability in mid-price returns is not just present, but ubiquitous. The performance of the deep learning models is strongly dependent on the choice of order book representation, and in this respect, the volume representation appears to have multiple practical advantages.

Suggested Citation

  • Lorenzo Lucchese & Mikko Pakkanen & Almut Veraart, 2022. "The Short-Term Predictability of Returns in Order Book Markets: a Deep Learning Perspective," Papers 2211.13777, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2211.13777
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.13777
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nyblom, Jukka & Harvey, Andrew, 2000. "Tests Of Common Stochastic Trends," Econometric Theory, Cambridge University Press, vol. 16(2), pages 176-199, April.
    2. Harvey, A. & Bates, D., 2003. "Multivariate Unit Root Tests and Testing for Convergence," Cambridge Working Papers in Economics 0301, Faculty of Economics, University of Cambridge.
    3. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2013. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88, December.
    4. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    5. Yacine Aït-Sahalia & Jianqing Fan & Lirong Xue & Yifeng Zhou, 2022. "How and When are High-Frequency Stock Returns Predictable?," NBER Working Papers 30366, National Bureau of Economic Research, Inc.
    6. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    7. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    8. Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
    9. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 852-866, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvaro Arroyo & Alvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2023. "Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers," Papers 2306.05479, arXiv.org.
    2. Matteo Prata & Giuseppe Masi & Leonardo Berti & Viviana Arrigoni & Andrea Coletta & Irene Cannistraci & Svitlana Vyetrenko & Paola Velardi & Novella Bartolini, 2023. "LOB-Based Deep Learning Models for Stock Price Trend Prediction: A Benchmark Study," Papers 2308.01915, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    2. Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "Towards Robust Representation of Limit Orders Books for Deep Learning Models," Papers 2110.05479, arXiv.org, revised Dec 2022.
    3. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Mar 2023.
    4. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    5. Kwan, Yum K. & Leung, Charles Ka Yui & Dong, Jinyue, 2015. "Comparing consumption-based asset pricing models: The case of an Asian city," Journal of Housing Economics, Elsevier, vol. 28(C), pages 18-41.
    6. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    7. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    8. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    9. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    10. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    11. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    12. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    13. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    14. Matteo Prata & Giuseppe Masi & Leonardo Berti & Viviana Arrigoni & Andrea Coletta & Irene Cannistraci & Svitlana Vyetrenko & Paola Velardi & Novella Bartolini, 2023. "LOB-Based Deep Learning Models for Stock Price Trend Prediction: A Benchmark Study," Papers 2308.01915, arXiv.org, revised Sep 2023.
    15. Mostafa Shabani & Martin Magris & George Tzagkarakis & Juho Kanniainen & Alexandros Iosifidis, 2022. "Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots," Papers 2210.14605, arXiv.org, revised Nov 2022.
    16. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    17. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    18. Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
    19. Carvalho, Vasco M. & Harvey, Andrew C., 2005. "Growth, cycles and convergence in US regional time series," International Journal of Forecasting, Elsevier, vol. 21(4), pages 667-686.
    20. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.13777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.