IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.14605.html
   My bibliography  Save this paper

Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots

Author

Listed:
  • Mostafa Shabani
  • Martin Magris
  • George Tzagkarakis
  • Juho Kanniainen
  • Alexandros Iosifidis

Abstract

Cross-correlation analysis is a powerful tool for understanding the mutual dynamics of time series. This study introduces a new method for predicting the future state of synchronization of the dynamics of two financial time series. To this end, we use the cross-recurrence plot analysis as a nonlinear method for quantifying the multidimensional coupling in the time domain of two time series and for determining their state of synchronization. We adopt a deep learning framework for methodologically addressing the prediction of the synchronization state based on features extracted from dynamically sub-sampled cross-recurrence plots. We provide extensive experiments on several stocks, major constituents of the S\&P100 index, to empirically validate our approach. We find that the task of predicting the state of synchronization of two time series is in general rather difficult, but for certain pairs of stocks attainable with very satisfactory performance.

Suggested Citation

  • Mostafa Shabani & Martin Magris & George Tzagkarakis & Juho Kanniainen & Alexandros Iosifidis, 2022. "Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots," Papers 2210.14605, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:2210.14605
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.14605
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Addo, Peter Martey & Billio, Monica & Guégan, Dominique, 2013. "Nonlinear dynamics and recurrence plots for detecting financial crisis," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 416-435.
    2. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    3. Naftali Cohen & Srijan Sood & Zhen Zeng & Tucker Balch & Manuela Veloso, 2021. "Visual Time Series Forecasting: An Image-driven Approach," Papers 2107.01273, arXiv.org, revised Nov 2021.
    4. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    5. He, Qian & Huang, Jingjing, 2020. "A method for analyzing correlation between multiscale and multivariate systems—Multiscale multidimensional cross recurrence quantification (MMDCRQA)," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
    7. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    8. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
    9. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    10. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    11. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    12. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    13. J.A. Hołyst & M. Żebrowska & K. Urbanowicz, 2001. "Observations of deterministic chaos in financial time series by recurrence plots, can one control chaotic economy?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 531-535, April.
    14. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    15. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    16. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    17. He Huang & Alec N. Kercheval, 2012. "A generalized birth--death stochastic model for high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 547-557, August.
    18. Srijan Sood & Zhen Zeng & Naftali Cohen & Tucker Balch & Manuela Veloso, 2020. "Visual Time Series Forecasting: An Image-driven Approach," Papers 2011.09052, arXiv.org, revised Nov 2021.
    19. A. Fabretti & M. Ausloos, 2005. "Recurrence Plot And Recurrence Quantification Analysis Techniques For Detecting A Critical Regime. Examples From Financial Market Inidices," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 671-706.
    20. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679.
    21. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 852-866, December.
    22. O. B. Sezer & M. Ozbayoglu & E. Dogdu, 2017. "An Artificial Neural Network-based Stock Trading System Using Technical Analysis and Big Data Framework," Papers 1712.09592, arXiv.org.
    23. Ma, Feng & Wei, Yu & Huang, Dengshi, 2013. "Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1659-1670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Shabani & M. Magris & George Tzagkarakis & J. Kanniainen & A. Iosifidis, 2023. "Predicting the state of synchronization of financial time series using cross recurrence plots," Post-Print hal-04415269, HAL.
    2. Ashe, Sinéad & Egan, Paul, 2023. "Examining financial and business cycle interaction using cross recurrence plot analysis," Finance Research Letters, Elsevier, vol. 51(C).
    3. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    4. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    5. Teresa Aparicio & Dulce Saura, 2013. "Do Exchange Rate Series Present General Dependence? Some Results using Recurrence Quantification Analysis," Journal of Economics and Behavioral Studies, AMH International, vol. 5(10), pages 678-686.
    6. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
    7. Maki, Daiki, 2015. "Wild bootstrap testing for cointegration in an ESTAR error correction model," Economic Modelling, Elsevier, vol. 47(C), pages 292-298.
    8. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    9. Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
    10. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    11. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    12. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    13. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    14. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
    15. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    16. Zijian Shi & Yu Chen & John Cartlidge, 2021. "The LOB Recreation Model: Predicting the Limit Order Book from TAQ History Using an Ordinary Differential Equation Recurrent Neural Network," Papers 2103.01670, arXiv.org.
    17. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    19. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    20. Philippe Charlot & Vêlayoudom Marimoutou, 2008. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model," Working Papers halshs-00285866, HAL.
    21. Yao, Can-Zhong & Lin, Qing-Wen, 2017. "Recurrence plots analysis of the CNY exchange markets based on phase space reconstruction," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 584-596.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.14605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.