IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.15453.html
   My bibliography  Save this paper

Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model

Author

Listed:
  • Yuecai Han
  • Xudong Zheng

Abstract

We investigate the problem of pricing derivatives under a fractional stochastic volatility model. We obtain an approximate expression of the derivative price where the stochastic volatility can be composed of deterministic functions of time and fractional Ornstein-Uhlenbeck process. Numerical simulations are given to illustrate the feasibility and operability of the approximation, and also demonstrate the effect of long-range on derivative prices.

Suggested Citation

  • Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
  • Handle: RePEc:arx:papers:2210.15453
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.15453
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cipian Necula, 2008. "Option Pricing in a Fractional Brownian Motion Environment," Advances in Economic and Financial Research - DOFIN Working Paper Series 2, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    2. Carole Bernard & Zhenyu Cui, 2014. "Prices and Asymptotics for Discrete Variance Swaps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(2), pages 140-173, April.
    3. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    4. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    5. Robert Elliott & Tak Kuen Siu & Leunglung Chan, 2007. "Pricing Volatility Swaps Under Heston's Stochastic Volatility Model with Regime Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 41-62.
    6. Windcliff, H. & Forsyth, P.A. & Vetzal, K.R., 2006. "Pricing methods and hedging strategies for volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 409-431, February.
    7. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    8. M. Beben & A. Orłowski, 2001. "Correlations in financial time series: established versus emerging markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 527-530, April.
    9. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Thomas Little & Vijay Pant, 2002. "A Finite Difference Method For The Valuation Of Variance Swaps," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume III), chapter 12, pages 275-295, World Scientific Publishing Co. Pte. Ltd..
    12. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    13. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    14. Bwo-Nung Huang & Chin Yang, 1995. "The fractal structure in multinational stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 2(3), pages 67-71.
    15. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    16. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, January.
    2. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    3. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    4. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    5. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    6. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    7. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    8. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    10. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    11. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    12. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    13. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    14. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    15. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.
    16. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
    17. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    18. Hussain, Sultan & Arif, Hifsa & Noorullah, Muhammad & Pantelous, Athanasios A., 2023. "Pricing American Options under Azzalini Ito-McKean Skew Brownian Motions," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    19. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    20. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.15453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.