IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.15198.html
   My bibliography  Save this paper

Exploring the trilemma of cost-efficient, equitable and publicly acceptable onshore wind expansion planning

Author

Listed:
  • Jann Michael Weinand
  • Russell McKenna
  • Heidi Heinrichs
  • Michael Roth
  • Detlef Stolten
  • Wolf Fichtner

Abstract

Onshore wind development has historically focused on cost-efficiency, which may lead to inequitable turbine distributions and public resistance due to landscape impacts. Using a multi-criteria planning approach, we show how onshore wind capacity targets can be achieved by 2050 in a cost-efficient, equitable and publicly acceptable way. For the case study of Germany, we build on the existing turbine stock and use open data on technically feasible turbine locations and scenicness of landscapes to plan the optimal expansion. The analysis shows that while the trade-off between cost-efficiency and public acceptance is rather weak with about 15% higher costs or scenicness, an equitable distribution has a large impact on these criteria. Although the onshore wind capacity per inhabitant could be distributed about 220% more equitably through the expansion, equity would severely limit planning flexibility by 2050. Our analysis assists stakeholders in resolving the onshore wind expansion trilemma.

Suggested Citation

  • Jann Michael Weinand & Russell McKenna & Heidi Heinrichs & Michael Roth & Detlef Stolten & Wolf Fichtner, 2021. "Exploring the trilemma of cost-efficient, equitable and publicly acceptable onshore wind expansion planning," Papers 2106.15198, arXiv.org.
  • Handle: RePEc:arx:papers:2106.15198
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.15198
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Roth & Silvio Hildebrandt & Ulrich Walz & Wolfgang Wende, 2021. "Large-Area Empirically Based Visual Landscape Quality Assessment for Spatial Planning—A Validation Approach by Method Triangulation," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    2. Molnarova, Kristina & Sklenicka, Petr & Stiborek, Jiri & Svobodova, Kamila & Salek, Miroslav & Brabec, Elizabeth, 2012. "Visual preferences for wind turbines: Location, numbers and respondent characteristics," Applied Energy, Elsevier, vol. 92(C), pages 269-278.
    3. Reusswig, Fritz & Braun, Florian & Heger, Ines & Ludewig, Thomas & Eichenauer, Eva & Lass, Wiebke, 2016. "Against the wind: Local opposition to the German Energiewende," Utilities Policy, Elsevier, vol. 41(C), pages 214-227.
    4. Ryberg, David Severin & Caglayan, Dilara Gulcin & Schmitt, Sabrina & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs," Energy, Elsevier, vol. 182(C), pages 1222-1238.
    5. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    6. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Hilary S. Boudet, 2019. "Public perceptions of and responses to new energy technologies," Nature Energy, Nature, vol. 4(6), pages 446-455, June.
    8. Lidia Ceriani & Paolo Verme, 2012. "The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(3), pages 421-443, September.
    9. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    10. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    11. Sonnberger, Marco & Ruddat, Michael, 2017. "Local and socio-political acceptance of wind farms in Germany," Technology in Society, Elsevier, vol. 51(C), pages 56-65.
    12. Jeremy Firestone & Hannah Kirk, 2019. "A strong relative preference for wind turbines in the United States among those who live near them," Nature Energy, Nature, vol. 4(4), pages 311-320, April.
    13. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Jan-Philipp Sasse & Evelina Trutnevyte, 2020. "Regional impacts of electricity system transition in Central Europe until 2035," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    15. Lena Kitzing & Morten Kofoed Jensen & Thomas Telsnig & Eric Lantz, 2020. "Multifaceted drivers for onshore wind energy repowering and their implications for energy transition," Nature Energy, Nature, vol. 5(12), pages 1012-1021, December.
    16. Azarova, Valeriya & Cohen, Jed & Friedl, Christina & Reichl, Johannes, 2019. "Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland," Energy Policy, Elsevier, vol. 132(C), pages 1176-1183.
    17. Slattery, Michael C. & Johnson, Becky L. & Swofford, Jeffrey A. & Pasqualetti, Martin J., 2012. "The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3690-3701.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    3. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    4. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    6. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    7. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    8. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    9. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    10. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    11. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    12. John C. Pierce & Rachel M. Krause & Sarah L. Hofmeyer & Bonnie J. Johnson, 2021. "Explanations for Wind Turbine Installations: Local and Global Environmental Concerns in the Central Corridor of the United States?," Energies, MDPI, vol. 14(18), pages 1-11, September.
    13. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    14. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    16. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    18. Sigurd Hilmo Lundheim & Giuseppe Pellegrini-Masini & Christian A. Klöckner & Stefan Geiss, 2022. "Developing a Theoretical Framework to Explain the Social Acceptability of Wind Energy," Energies, MDPI, vol. 15(14), pages 1-24, July.
    19. Shawn Olson Hazboun & Hilary Schaffer Boudet, 2020. "Public Preferences in a Shifting Energy Future: Comparing Public Views of Eight Energy Sources in North America’s Pacific Northwest," Energies, MDPI, vol. 13(8), pages 1-21, April.
    20. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.15198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.