IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.14382.html
   My bibliography  Save this paper

Asset volatility forecasting:The optimal decay parameter in the EWMA model

Author

Listed:
  • Axel A. Araneda

Abstract

The exponentially weighted moving average (EMWA) could be labeled as a competitive volatility estimator, where its main strength relies on computation simplicity, especially in a multi-asset scenario, due to dependency only on the decay parameter, $\lambda$. But, what is the best election for $\lambda$ in the EMWA volatility model? Through a large time-series data set of historical returns of the top US large-cap companies; we test empirically the forecasting performance of the EWMA approach, under different time horizons and varying the decay parameter. Using a rolling window scheme, the out-of-sample performance of the variance-covariance matrix is computed following two approaches. First, if we look for a fixed decay parameter for the full sample, the results are in agreement with the RiskMetrics suggestion for 1-month forecasting. In addition, we provide the full-sample optimal decay parameter for the weekly and bi-weekly forecasting horizon cases, confirming two facts: i) the optimal value is as a function of the forecasting horizon, and ii) for lower forecasting horizons the short-term memory gains importance. In a second way, we also evaluate the forecasting performance of EWMA, but this time using the optimal time-varying decay parameter which minimizes the in-sample variance-covariance estimator, arriving at better accuracy than the use of a fixed-full-sample optimal parameter.

Suggested Citation

  • Axel A. Araneda, 2021. "Asset volatility forecasting:The optimal decay parameter in the EWMA model," Papers 2105.14382, arXiv.org.
  • Handle: RePEc:arx:papers:2105.14382
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.14382
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Marco Bee & Fabrizio Miorelli, 2010. "Dynamic VaR models and the Peaks over Threshold method for market risk measurement: an empirical investigation during a financial crisis," Department of Economics Working Papers 1009, Department of Economics, University of Trento, Italia.
    3. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Bernard Bollen, 2015. "What should the value of lambda be in the exponentially weighted moving average volatility model?," Applied Economics, Taylor & Francis Journals, vol. 47(8), pages 853-860, February.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Jie Ding & Nigel Meade, 2010. "Forecasting accuracy of stochastic volatility, GARCH and EWMA models under different volatility scenarios," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 771-783.
    8. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    9. Bollerslev, Tim & Russell, Jeffrey & Watson, Mark (ed.), 2010. "Volatility and Time Series Econometrics: Essays in Honor of Robert Engle," OUP Catalogue, Oxford University Press, number 9780199549498.
    10. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Zhang & Evangelos Giouvris, 2023. "What Is the Effect of Oil and Gas Markets (Spot/Futures) on Herding in BRICS? Recent Evidence (2007–2022)," JRFM, MDPI, vol. 16(11), pages 1-41, October.
    2. Santosh KUMAR & Bharat Kumar MEHER & Ramona BIRAU & Abhishek ANAND & Mircea Laurentiu SIMION, 2023. "Investigating Volatility Dynamics of the Portugal Stock Market using FIGARCH Models," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 39-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    2. Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
    3. Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
    4. Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
    5. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    6. Kris Boudt & Hong Anh Luu, 2022. "Estimation and decomposition of food price inflation risk," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 295-319, June.
    7. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    8. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    9. repec:awi:wpaper:0472 is not listed on IDEAS
    10. Chong, James, 2005. "The forecasting abilities of implied and econometric variance-covariance models across financial measures," Journal of Economics and Business, Elsevier, vol. 57(5), pages 463-490.
    11. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    12. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    13. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    14. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
    15. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    16. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    17. Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
    18. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    19. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    20. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    21. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.14382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.