IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.09443.html
   My bibliography  Save this paper

Pricing vulnerable options in a hybrid credit risk model driven by Heston-Nandi GARCH processes

Author

Listed:
  • Gechun Liang
  • Xingchun Wang

Abstract

This paper proposes a hybrid credit risk model, in closed form, to price vulnerable options with stochastic volatility. The distinctive features of the model are threefold. First, both the underlying and the option issuer's assets follow the Heston-Nandi GARCH model with their conditional variance being readily estimated and implemented solely on the basis of the observable prices in the market. Second, the model incorporates both idiosyncratic and systematic risks into the asset dynamics of the underlying and the option issuer, as well as the intensity process. Finally, the explicit pricing formula of vulnerable options enables us to undertake the comparative statistics analysis.

Suggested Citation

  • Gechun Liang & Xingchun Wang, 2020. "Pricing vulnerable options in a hybrid credit risk model driven by Heston-Nandi GARCH processes," Papers 2001.09443, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:2001.09443
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.09443
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lie-Jane Kao, 2016. "Credit valuation adjustment of cap and floor with counterparty risk: a structural pricing model for vulnerable European options," Review of Derivatives Research, Springer, vol. 19(1), pages 41-64, April.
    2. Melanie Cao & Jason Wei, 2001. "Vulnerable options, risky corporate bond, and credit spread," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(4), pages 301-327, April.
    3. Madan, Dilip & Unal, Haluk, 2000. "A Two-Factor Hazard Rate Model for Pricing Risky Debt and the Term Structure of Credit Spreads," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(1), pages 43-65, March.
    4. Jia-Wen Gu & Wai-Ki Ching & Tak-Kuen Siu & Harry Zheng, 2014. "On reduced-form intensity-based model with ‘trigger’ events," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 331-339, March.
    5. Szu-Lang Liao & Hsing-Hua Huang, 2005. "Pricing Black-Scholes options with correlated interest rate risk and credit risk: an extension," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 443-457.
    6. Xu, Weidong & Xu, Weijun & Li, Hongyi & Xiao, Weilin, 2012. "A jump-diffusion approach to modelling vulnerable option pricing," Finance Research Letters, Elsevier, vol. 9(1), pages 48-56.
    7. Fard, Farzad Alavi, 2015. "Analytical pricing of vulnerable options under a generalized jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 19-28.
    8. K. Hsieh & P. Ritchken, 2005. "An empirical comparison of GARCH option pricing models," Review of Derivatives Research, Springer, vol. 8(3), pages 129-150, December.
    9. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    10. Wang, Guanying & Wang, Xingchun & Zhou, Ke, 2017. "Pricing vulnerable options with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 91-103.
    11. Chao Wang & Jianmin He & Shouwei Li, 2016. "The European Vulnerable Option Pricing with Jumps Based on a Mixed Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-9, December.
    12. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    13. F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
    14. Gurdip Bakshi & Dilip Madan & Frank Xiaoling Zhang, 2006. "Investigating the Role of Systematic and Firm-Specific Factors in Default Risk: Lessons from Empirically Evaluating Credit Risk Models," The Journal of Business, University of Chicago Press, vol. 79(4), pages 1955-1988, July.
    15. Boudreault, Mathieu & Gauthier, Geneviève & Thomassin, Tommy, 2014. "Contagion effect on bond portfolio risk measures in a hybrid credit risk model," Finance Research Letters, Elsevier, vol. 11(2), pages 131-139.
    16. Wang, Xingchun, 2016. "Pricing vulnerable options with stochastic default barriers," Finance Research Letters, Elsevier, vol. 19(C), pages 305-313.
    17. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    18. Lee, Min-Ku & Yang, Sung-Jin & Kim, Jeong-Hoon, 2016. "A closed form solution for vulnerable options with Heston’s stochastic volatility," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 23-27.
    19. Klein, Peter & Inglis, Michael, 2001. "Pricing vulnerable European options when the option's payoff can increase the risk of financial distress," Journal of Banking & Finance, Elsevier, vol. 25(5), pages 993-1012, May.
    20. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    21. Lihui Tian & Guanying Wang & Xingchun Wang & Yongjin Wang, 2014. "Pricing Vulnerable Options with Correlated Credit Risk Under Jump‐Diffusion Processes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(10), pages 957-979, October.
    22. Johnson, Herb & Stulz, Rene, 1987. "The Pricing of Options with Default Risk," Journal of Finance, American Finance Association, vol. 42(2), pages 267-280, June.
    23. Zhiwei Su & Xingchun Wang, 2019. "Pricing executive stock options with averaging features under the Heston–Nandi GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1056-1084, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingchun & Zhang, Han, 2022. "Pricing basket spread options with default risk under Heston–Nandi GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    2. Xingchun Wang, 2022. "Valuing fade-in options with default risk in Heston–Nandi GARCH models," Review of Derivatives Research, Springer, vol. 25(1), pages 1-22, April.
    3. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    4. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    5. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
    2. Wang, Xingchun, 2021. "Valuation of options on the maximum of two prices with default risk under GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Xingchun Wang, 2020. "Analytical valuation of Asian options with counterparty risk under stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 410-429, March.
    4. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    5. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    6. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    7. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
    9. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    10. Xingchun Wang, 2022. "Valuing fade-in options with default risk in Heston–Nandi GARCH models," Review of Derivatives Research, Springer, vol. 25(1), pages 1-22, April.
    11. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    12. Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2022. "Approximate value adjustments for European claims," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1149-1161.
    13. Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Wang, Xingchun, 2016. "Pricing vulnerable options with stochastic default barriers," Finance Research Letters, Elsevier, vol. 19(C), pages 305-313.
    15. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    16. Jeon, Jaegi & Kim, Geonwoo & Huh, Jeonggyu, 2021. "An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. E. Alòs & F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "Cva And Vulnerable Options In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-34, March.
    18. Wang, Xingchun, 2022. "Pricing vulnerable options with stochastic liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    19. Wang, Guanying & Wang, Xingchun & Zhou, Ke, 2017. "Pricing vulnerable options with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 91-103.
    20. Lie-Jane Kao, 2016. "Credit valuation adjustment of cap and floor with counterparty risk: a structural pricing model for vulnerable European options," Review of Derivatives Research, Springer, vol. 19(1), pages 41-64, April.

    More about this item

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.09443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.