IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.05681.html
   My bibliography  Save this paper

Forecasting dynamic return distributions based on ordered binary choice

Author

Listed:
  • Stanislav Anatolyev
  • Jozef Barunik

Abstract

We present a simple approach to forecasting conditional probability distributions of asset returns. We work with a parsimonious specification of ordered binary choice regression that imposes a connection on sign predictability across different quantiles. The model forecasts the future conditional probability distributions of returns quite precisely when using a past indicator and past volatility proxy as predictors. Direct benefits of the model are revealed in an empirical application to the 29 most liquid U.S. stocks. The forecast probability distribution is translated to significant economic gains in a simple trading strategy. Our approach can also be useful in many other applications where conditional distribution forecasts are desired.

Suggested Citation

  • Stanislav Anatolyev & Jozef Barunik, 2017. "Forecasting dynamic return distributions based on ordered binary choice," Papers 1711.05681, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1711.05681
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.05681
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
    2. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    3. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    4. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    6. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    7. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    8. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    9. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    10. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    11. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    12. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    13. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    14. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    15. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    18. Torsten Hothorn & Thomas Kneib & Peter Bühlmann, 2014. "Conditional transformation models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 3-27, January.
    19. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    20. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    21. González-Rivera, Gloria & Sun, Yingying, 2015. "Generalized autocontours: Evaluation of multivariate density models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 799-814.
    22. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    23. Breen, William & Glosten, Lawrence R & Jagannathan, Ravi, 1989. " Economic Significance of Predictable Variations in Stock Index Returns," Journal of Finance, American Finance Association, vol. 44(5), pages 1177-1189, December.
    24. Anatolyev, Stanislav & Gospodinov, Nikolay, 2010. "Modeling Financial Return Dynamics via Decomposition," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 232-245.
    25. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    26. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    27. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    28. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Anatolyev, 2021. "Directional news impact curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 94-107, January.
    2. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    3. Jozef Barunik & Lubos Hanus, 2023. "Learning Probability Distributions of Day-Ahead Electricity Prices," Papers 2310.02867, arXiv.org, revised Oct 2023.
    4. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    2. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    3. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    4. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
    5. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
    6. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    7. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    8. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
    11. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    12. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    13. Turan Bali & Kamil Yilmaz, 2009. "The Intertemporal Relation between Expected Return and Risk on Currency," Koç University-TUSIAD Economic Research Forum Working Papers 0909, Koc University-TUSIAD Economic Research Forum, revised Nov 2009.
    14. Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
    15. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    16. Liu, Jiadong & Papailias, Fotis & Quinn, Barry, 2021. "Direction-of-change forecasting in commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
    17. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, New Economic School (NES).
    18. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    20. Gu, Wentao & Peng, Yiqing, 2019. "Forecasting the market return direction based on a time-varying probability density model," Technological Forecasting and Social Change, Elsevier, vol. 148(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.05681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.