IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1704.08234.html
   My bibliography  Save this paper

Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model

Author

Listed:
  • Nian Yao
  • Zhiming Yang

Abstract

In this paper, we study an optimal excess-of-loss reinsurance and investment problem for an insurer in defaultable market. The insurer can buy reinsurance and invest in the following securities: a bank account, a risky asset with stochastic volatility and a defaultable corporate bond. We discuss the optimal investment strategy into two subproblems: a pre-default case and a post-default case. We show the existence of a classical solution to a pre-default case via super-sub solution techniques and give an explicit characterization of the optimal reinsurance and investment policies that maximize the expected CARA utility of the terminal wealth. We prove a verification theorem establishing the uniqueness of the solution. Numerical results are presented in the case of the Scott model and we discuss economic insights obtained from these results.

Suggested Citation

  • Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
  • Handle: RePEc:arx:papers:1704.08234
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1704.08234
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    2. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    3. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    4. Chi Liu & Hailiang Yang, 2004. "Optimal Investment for an Insurer to Minimize Its Probability of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 11-31.
    5. Lijun Bo & Xindan Li & Yongjin Wang & Xuewei Yang, 2013. "Optimal Investment and Consumption with Default Risk: HARA Utility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(3), pages 261-281, September.
    6. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    7. Darrell Duffie & Lasse Heje Pedersen & Kenneth J. Singleton, 2003. "Modeling Sovereign Yield Spreads: A Case Study of Russian Debt," Journal of Finance, American Finance Association, vol. 58(1), pages 119-159, February.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    10. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    11. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    12. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    13. Gu, Mengdi & Yang, Yipeng & Li, Shoude & Zhang, Jingyi, 2010. "Constant elasticity of variance model for proportional reinsurance and investment strategies," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 580-587, June.
    14. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    15. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    16. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    17. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    18. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    19. Christensen, Jens H.E. & Hansen, Ernst & Lando, David, 2004. "Confidence sets for continuous-time rating transition probabilities," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2575-2602, November.
    20. Badaoui, Mohamed & Fernández, Begoña, 2013. "An optimal investment strategy with maximal risk aversion and its ruin probability in the presence of stochastic volatility on investments," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 1-13.
    21. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    2. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    3. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    4. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    5. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    6. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    7. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    8. Zhao, Hui & Shen, Yang & Zeng, Yan & Zhang, Wenjun, 2019. "Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean–variance insurer with ambiguity aversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 159-180.
    9. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    10. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    11. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    12. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    13. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    14. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    15. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    16. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    17. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    18. Jiaqi Zhu & Shenghong Li, 2020. "Time-Consistent Investment and Reinsurance Strategies for Mean-Variance Insurers under Stochastic Interest Rate and Stochastic Volatility," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    19. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.
    20. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1704.08234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.