IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v61y2015icp181-196.html
   My bibliography  Save this article

Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model

Author

Listed:
  • A, Chunxiang
  • Li, Zhongfei

Abstract

This paper considers an optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s stochastic volatility (SV) model. Suppose that the insurer is allowed to purchase excess-of-loss reinsurance and invests her surplus in a financial market consisting of one risk-free asset and one risky asset whose price process is described by Heston’s SV model. Under the consideration of the performance-related capital inflow/outflow, the wealth process of the insurer is modeled by a stochastic differential delay equation. The insurer’s aim is to maximize the expected exponential utility of the combination of terminal wealth and average performance wealth. By adopting the dynamic programming approach, the optimal strategies and the optimal value functions are derived explicitly under two cases: the investment-reinsurance case and the investment-only case. Finally, some numerical examples and sensitivity analysis are provided for our results.

Suggested Citation

  • A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
  • Handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:181-196
    DOI: 10.1016/j.insmatheco.2015.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang Lin & Chunhong Zhang & Tak Siu, 2012. "Stochastic differential portfolio games for an insurer in a jump-diffusion risk process," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(1), pages 83-100, February.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    5. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    6. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    7. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
    8. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    9. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    10. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    11. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    12. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    13. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    14. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    15. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    16. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    19. Mou-Hsiung Chang & Tao Pang & Yipeng Yang, 2011. "A Stochastic Portfolio Optimization Model with Bounded Memory," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 604-619, November.
    20. Hojgaard, Bjarne & Taksar, Michael, 1998. "Optimal proportional reinsurance policies for diffusion models with transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 41-51, May.
    21. Chen, Shumin & Li, Zhongfei & Li, Kemian, 2010. "Optimal investment-reinsurance policy for an insurance company with VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 144-153, October.
    22. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    23. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    24. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Chunfeng & Chang Hao & Fang Zhenming, 2017. "Optimal Consumption and Portfolio Decision with Heston’s SV Model Under HARA Utility Criterion," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 21-33, February.
    2. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2021. "A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 341-381, December.
    3. Ning Bin & Huainian Zhu & Chengke Zhang, 2023. "Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    4. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    5. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2019. "A hybrid stochastic differential reinsurance and investment game with bounded memory," Papers 1910.09834, arXiv.org.
    6. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    7. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    8. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    9. A Chunxiang & Shao Yi, 2018. "Worst-Case Investment Strategy with Delay," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 35-57, February.
    10. Qiang Zhang & Ping Chen, 2020. "Optimal Reinsurance and Investment Strategy for an Insurer in a Model with Delay and Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 777-801, June.
    11. Lu Yang & Chengke Zhang & Huainian Zhu, 2022. "Robust Stochastic Stackelberg Differential Reinsurance and Investment Games for an Insurer and a Reinsurer with Delay," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 361-384, March.
    12. Rodwell Kufakunesu & Calisto Guambe & Lesedi Mabitsela, 2018. "Risk-based optimal portfolio of an insurer with regime switching and noisy memory," Papers 1808.04604, arXiv.org, revised Mar 2019.
    13. Chen, Dengsheng & He, Yong & Li, Ziqiang, 2023. "Robust optimal reinsurance–investment for α-maxmin mean–variance utility under Heston’s SV model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    2. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    3. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    4. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    5. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    6. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    7. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    8. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    9. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    10. Qiang Zhang & Ping Chen, 2020. "Optimal Reinsurance and Investment Strategy for an Insurer in a Model with Delay and Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 777-801, June.
    11. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    12. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    13. Zhao, Hui & Shen, Yang & Zeng, Yan & Zhang, Wenjun, 2019. "Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean–variance insurer with ambiguity aversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 159-180.
    14. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    15. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    16. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    17. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2021. "A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 341-381, December.
    18. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    19. Bi, Junna & Cai, Jun, 2019. "Optimal investment–reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 1-14.
    20. He, Yong & Zhou, Xia & Chen, Peimin & Wang, Xiaoyang, 2022. "An analytical solution for the robust investment-reinsurance strategy with general utilities," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:181-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.