Advanced Search
MyIDEAS: Login to save this article or follow this journal

Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation

Contents:

Author Info

  • Bjarne Højgaard

    ()
    (Department of Mathematics, Aalborg University, Fr. Bajersv. 7E, DK-9220 Aalborg Ø, Denmark)

  • Søren Asmussen

    ()
    (Department of Mathematical Statistics, University of Lund, Box 118, S-221 00 Lund, Sweden)

  • Michael Taksar

    ()
    (Department of AMS SUNY - Stony Brook, NY, USA Manuscript)

Registered author(s):

    Abstract

    We consider a model of a financial corporation which has to find an optimal policy balancing its risk and expected profits. The example treated in this paper is related to an insurance company with the risk control method known in the industry as excess-of-loss reinsurance. Under this scheme the insurance company divert part of its premium stream to another company in exchange of an obligation to pick up that amount of each claim which exceeds a certain level a. This reduces the risk but it also reduces the potential profit. The objective is to make a dynamic choice of a and find the dividend distribution policy, which maximizes the cumulative expected discounted dividend pay-outs. We use diffusion approximation for this optimal control problem, where two situations are considered: (a) The rate of dividend pay-out are unrestricted and in this case mathematically the problem becomes a mixed singular-regular control problem for diffusion processes. Its analytical part is related to a free boundary (Stephan) problem for a linear second order differential equation. The optimal policy prescribes to reinsure using a certain retention level (depending on the reserve) and pay no dividends when the reserve is below some critical level $x_1$ and to pay out everything that exceeds $x_1$. Reinsurance will stop at a level $x_0\leq x_1$ depending on the claim size distribution. (b) The rate of dividend pay-out is bounded by some positive constant $M

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://link.springer.de/link/service/journals/00780/papers/0004003/00040299.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Finance and Stochastics.

    Volume (Year): 4 (2000)
    Issue (Month): 3 ()
    Pages: 299-324

    as in new window
    Handle: RePEc:spr:finsto:v:4:y:2000:i:3:p:299-324

    Note: received: May 1998; final version received: July 1999
    Contact details of provider:
    Web page: http://www.springerlink.com/content/101164/

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. He, Lin & Liang, Zongxia, 2008. "Optimal financing and dividend control of the insurance company with proportional reinsurance policy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 976-983, June.
    2. Jin, Zhuo & Yin, G. & Wu, Fuke, 2013. "Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 733-746.
    3. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    4. Zhuo Jin & George Yin & Chao Zhu, 2011. "Numerical Solutions of Optimal Risk Control and Dividend Optimization Policies under A Generalized Singular Control Formulation," Papers 1111.2584, arXiv.org.
    5. Abel Elizalde, 2007. "From Basel I To Basel Ii: An Analysis Of The Three Pillars," Working Papers, CEMFI wp2007_0704, CEMFI.
    6. Jean-Paul Décamps & Stéphane Villeneuve, 2007. "Optimal dividend policy and growth option," Finance and Stochastics, Springer, Springer, vol. 11(1), pages 3-27, January.
    7. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    8. Chen, Mi & Peng, Xiaofan & Guo, Junyi, 2013. "Optimal dividend problem with a nonlinear regular-singular stochastic control," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 448-456.
    9. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    10. Irmina Czarna & Zbigniew Palmowski, 2010. "Dividend problem with Parisian delay for a spectrally negative L\'evy risk process," Papers 1004.3310, arXiv.org, revised Oct 2011.
    11. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    12. Peng, Xiaofan & Chen, Mi & Guo, Junyi, 2012. "Optimal dividend and equity issuance problem with proportional and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 576-585.
    13. Guo, Xin & Liu, Jun & Zhou, Xun Yu, 2004. "A constrained non-linear regular-singular stochastic control problem, with applications," Stochastic Processes and their Applications, Elsevier, Elsevier, vol. 109(2), pages 167-187, February.
    14. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, Elsevier, vol. 29(2), pages 198-207.
    15. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    16. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    17. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    18. Zhu, Jinxia & Chen, Feng, 2013. "Dividend optimization for regime-switching general diffusions," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 439-456.
    19. Liu, Wei & Hu, Yijun, 2014. "Optimal financing and dividend control of the insurance company with excess-of-loss reinsurance policy," Statistics & Probability Letters, Elsevier, Elsevier, vol. 84(C), pages 121-130.
    20. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2011. "Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs," European Journal of Operational Research, Elsevier, Elsevier, vol. 211(3), pages 568-576, June.
    21. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.
    22. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    23. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk-process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Mar 2014.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:4:y:2000:i:3:p:299-324. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.