IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1606.02871.html
   My bibliography  Save this paper

The study of Thai stock market across the 2008 financial crisis

Author

Listed:
  • K. Kanjamapornkul
  • Richard Pinv{c}'ak
  • Erik Bartov{s}

Abstract

The cohomology theory for financial market can allow us to deform Kolmogorov space of time series data over time period with the explicit definition of eight market states in grand unified theory. The anti-de Sitter space induced from a coupling behavior field among traders in case of a financial market crash acts like gravitational field in financial market spacetime. Under this hybrid mathematical superstructure, we redefine a behavior matrix by using Pauli matrix and modified Wilson loop for time series data. We use it to detect the 2008 financial market crash by using a degree of cohomology group of sphere over tensor field in correlation matrix over all possible dominated stocks underlying Thai SET50 Index Futures. The empirical analysis of financial tensor network was performed with the help of empirical mode decomposition and intrinsic time scale decomposition of correlation matrix and the calculation of closeness centrality of planar graph.

Suggested Citation

  • K. Kanjamapornkul & Richard Pinv{c}'ak & Erik Bartov{s}, 2016. "The study of Thai stock market across the 2008 financial crisis," Papers 1606.02871, arXiv.org.
  • Handle: RePEc:arx:papers:1606.02871
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1606.02871
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    4. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non‐stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    5. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    6. Starr,Ross M., 2011. "General Equilibrium Theory," Cambridge Books, Cambridge University Press, number 9780521533867.
    7. G. Oh & C. Eom & F. Wang & W.-S. Jung & H. E. Stanley & S. Kim, 2011. "Statistical properties of cross-correlation in the Korean stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 79(1), pages 55-60, January.
    8. Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Starr,Ross M., 2011. "General Equilibrium Theory," Cambridge Books, Cambridge University Press, number 9780521826457.
    11. Goldstein, Michael A. & A. Kavajecz, Kenneth, 2000. "Eighths, sixteenths, and market depth: changes in tick size and liquidity provision on the NYSE," Journal of Financial Economics, Elsevier, vol. 56(1), pages 125-149, April.
    12. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2016. "Cross-correlation analysis of stock markets using EMD and EEMD," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 82-90.
    13. K. Kanjamapornkul & R. Pinv{c}'ak, 2016. "Kolmogorov Space in Time Series Data," Papers 1606.03901, arXiv.org.
    14. Pinčák, Richard & Bartoš, Erik, 2015. "With string model to time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 135-146.
    15. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    16. Frenkel, Jacob A., 1978. "Purchasing power parity : Doctrinal perspective and evidence from the 1920s," Journal of International Economics, Elsevier, vol. 8(2), pages 169-191, May.
    17. Marek Bundzel & Tomas Kasanicky & Richard Pincak, 2016. "Using String Invariants for Prediction Searching for Optimal Parameters," Papers 1606.06003, arXiv.org.
    18. Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.
    19. Li, Hong, 2013. "Integration versus segmentation in China's stock market: An analysis of time-varying beta risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 25(C), pages 88-105.
    20. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    21. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    22. Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
    23. Black, Fischer, 1986. "Noise," Journal of Finance, American Finance Association, vol. 41(3), pages 529-543, July.
    24. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    25. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baumöhl, Eduard & Kočenda, Evžen & Lyócsa, Štefan & Výrost, Tomáš, 2018. "Networks of volatility spillovers among stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1555-1574.
    2. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    3. Kanjamapornkul, Kabin & Pinčák, Richard & Bartoš, Erik, 2020. "Cohomology theory for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    3. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    4. Bartoš, Erik & Pinčák, Richard, 2017. "Identification of market trends with string and D2-brane maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 57-70.
    5. Kanjamapornkul, Kabin & Pinčák, Richard & Bartoš, Erik, 2020. "Cohomology theory for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    6. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    7. Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    9. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    10. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    11. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    12. Gogas, Periklis & Papadimitriou, Theophilos & Matthaiou, Maria-Artemis, 2016. "Bank supervision using the Threshold-Minimum Dominating Set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 23-35.
    13. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    14. Olkhov, Victor, 2019. "New Essentials of Economic Theory," MPRA Paper 95065, University Library of Munich, Germany.
    15. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    16. Bollen, Nicolas P. B. & Smith, Tom & Whaley, Robert E., 2004. "Modeling the bid/ask spread: measuring the inventory-holding premium," Journal of Financial Economics, Elsevier, vol. 72(1), pages 97-141, April.
    17. Periklis Gogas & Theophilos Papadimitriou & Maria-Artemis Matthaiou, 2022. "Supervision of Banking Networks Using the Multivariate Threshold-Minimum Dominating Set (mT-MDS)," JRFM, MDPI, vol. 15(6), pages 1-13, June.
    18. Mansooreh Kazemilari & Maman Abdurachman Djauhari & Zuhaimy Ismail, 2016. "Foreign Exchange Market Performance: Evidence from Bivariate Time Series Approach," Papers 1608.07694, arXiv.org.
    19. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    20. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1606.02871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.