IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.07694.html
   My bibliography  Save this paper

Foreign Exchange Market Performance: Evidence from Bivariate Time Series Approach

Author

Listed:
  • Mansooreh Kazemilari
  • Maman Abdurachman Djauhari
  • Zuhaimy Ismail

Abstract

There are many studies dealing with the analysis of similarity among currencies in foreign exchange market by using network analysis approach. In those studies, each currency is represented by a univariate time series of exchange rate return. This is the standard practice to analyze the underlying information in the foreign exchange market. In this paper, Escoufier's RV coefficient is applied to measure the similarity among currencies where each of them is represented by bivariate time series. Based on that coefficient, we analyze the topological structure of the currencies. An example of FOREX analysis will be presented and discussed to illustrate the advantages of RV coefficient.

Suggested Citation

  • Mansooreh Kazemilari & Maman Abdurachman Djauhari & Zuhaimy Ismail, 2016. "Foreign Exchange Market Performance: Evidence from Bivariate Time Series Approach," Papers 1608.07694, arXiv.org.
  • Handle: RePEc:arx:papers:1608.07694
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.07694
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Cheoljun Eom & Gabjin Oh & Seunghwan Kim, 2007. "Deterministic Factors of Stock Networks based on Cross-correlation in Financial Market," Papers 0705.0076, arXiv.org.
    3. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    4. William Rozeboom, 1965. "Linear correlations between sets of variables," Psychometrika, Springer;The Psychometric Society, vol. 30(1), pages 57-71, March.
    5. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    6. A. Z. Gorski & S. Drozdz & J. Kwapien & P. Oswiecimka, 2006. "Complexity characteristics of currency networks," Papers physics/0606020, arXiv.org.
    7. W. Breymann & D. R. Lüthi & E. Platen, 2009. "Empirical behavior of a world stock index from intra-day to monthly time scales," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 511-522, October.
    8. Eugenio Vogel & Gonzalo Saravia, 2014. "Information theory applied to econophysics: stock market behaviors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(8), pages 1-15, August.
    9. G. Oh & C. Eom & F. Wang & W.-S. Jung & H. E. Stanley & S. Kim, 2011. "Statistical properties of cross-correlation in the Korean stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 79(1), pages 55-60, January.
    10. Keskin, Mustafa & Deviren, Bayram & Kocakaplan, Yusuf, 2011. "Topology of the correlation networks among major currencies using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 719-730.
    11. Elliot Cramer & W. Nicewander, 1979. "Some symmetric, invariant measures of multivariate association," Psychometrika, Springer;The Psychometric Society, vol. 44(1), pages 43-54, March.
    12. Jaroslaw Kwapien & Sylwia Gworek & Stanislaw Drozdz & Andrzej Gorski, 2009. "Analysis of a network structure of the foreign currency exchange market," Papers 0906.0480, arXiv.org.
    13. S. Drożdż & A. Z. Górski & J. Kwapień, 2007. "World currency exchange rate cross-correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(4), pages 499-502, August.
    14. Jang, Wooseok & Lee, Junghoon & Chang, Woojin, 2011. "Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 707-718.
    15. P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
    16. Jarosław Kwapień & Sylwia Gworek & Stanisław Drożdż & Andrzej Górski, 2009. "Analysis of a network structure of the foreign currency exchange market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 55-72, June.
    17. Naylor, Michael J. & Rose, Lawrence C. & Moyle, Brendan J., 2007. "Topology of foreign exchange markets using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 199-208.
    18. Eom, Cheoljun & Oh, Gabjin & Kim, Seunghwan, 2007. "Deterministic factors of stock networks based on cross-correlation in financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 139-146.
    19. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    20. Jaroslaw Kwapien & Sylwia Gworek & Stanislaw Drozdz, 2009. "Structure and evolution of the foreign exchange networks," Papers 0901.4793, arXiv.org.
    21. A. Z. Górski & S. Drożdż & J. Kwapień, 2008. "Scale free effects in world currency exchange network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(1), pages 91-96, November.
    22. Sitabhra Sinha & Uday Kovur, 2013. "Uncovering the network structure of the world currency market: Cross-correlations in the fluctuations of daily exchange rates," Papers 1305.0239, arXiv.org.
    23. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    24. Robert, P. & Cleroux, R. & Ranger, N., 1985. "Some results on vector correlation," Computational Statistics & Data Analysis, Elsevier, vol. 3(1), pages 25-32, May.
    25. Guillermo J. Ortega & David Matesanz, 2006. "Cross-Country Hierarchical Structure And Currency Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 333-341.
    26. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    27. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2006. "Correlation networks among currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 336-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemilari, Mansooreh & Djauhari, Maman Abdurachman, 2015. "Correlation network analysis for multi-dimensional data in stocks market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 62-75.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    4. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    5. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    6. Li, Bing & Liao, Zefang, 2020. "Finding changes in the foreign exchange market from the perspective of currency network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    8. Mansooreh Kazemilari & Ali Mohamadi, 2018. "Topological Network Analysis Based on Dissimilarity Measure of Multivariate Time Series Evolution in the Subprime Crisis," IJFS, MDPI, vol. 6(2), pages 1-16, May.
    9. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    10. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    11. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    12. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    13. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    14. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    15. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & Stosic, Tatijana, 2016. "Correlations of multiscale entropy in the FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 52-61.
    16. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.
    17. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    18. Leonidas Sandoval Junior, 2011. "Pruning a Minimum Spanning Tree," Papers 1109.0642, arXiv.org.
    19. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    20. Leonidas Sandoval Junior, 2011. "Cluster formation and evolution in networks of financial market indices," Papers 1111.5069, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.07694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.