IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v463y2016icp246-261.html
   My bibliography  Save this article

Comparing minimum spanning trees of the Italian stock market using returns and volumes

Author

Listed:
  • Coletti, Paolo

Abstract

We have built the network of the top 100 Italian quoted companies in the decade 2001–2011 using four different methods, comparing the resulting minimum spanning trees for methods and industry sectors. Our starting method is based on Person’s correlation of log-returns used by several other authors in the last decade. The second one is based on the correlation of symbolized log-returns, the third of log-returns and traded money and the fourth one uses a combination of log-returns with traded money. We show that some sectors correspond to the network’s clusters while others are scattered, in particular the trading and apparel sectors. We analyze the different graph’s measures for the four methods showing that the introduction of volumes induces larger distances and more homogeneous trees without big clusters.

Suggested Citation

  • Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
  • Handle: RePEc:eee:phsmap:v:463:y:2016:i:c:p:246-261
    DOI: 10.1016/j.physa.2016.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116304605
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    2. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    3. Wiliński, M. & Sienkiewicz, A. & Gubiec, T. & Kutner, R. & Struzik, Z.R., 2013. "Structural and topological phase transitions on the German Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5963-5973.
    4. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    7. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    8. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    9. Heimo, Tapio & Saramäki, Jari & Onnela, Jukka-Pekka & Kaski, Kimmo, 2007. "Spectral and network methods in the analysis of correlation matrices of stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 147-151.
    10. Juan Gabriel Brida & W. Adrian Risso, 2009. "Dynamic and Structure of the Italian stock market based on returns and volume trading," Economics Bulletin, AccessEcon, vol. 29(3), pages 2417-2423.
    11. J. C. Gower & G. J. S. Ross, 1969. "Minimum Spanning Trees and Single Linkage Cluster Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 18(1), pages 54-64, March.
    12. Grassi, Rosanna, 2010. "Vertex centrality as a measure of information flow in Italian Corporate Board Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2455-2464.
    13. C. Coronnello & M. Tumminello & F. Lillo & S. Miccich`e & R. N. Mantegna, 2005. "Sector identification in a set of stock return time series traded at the London Stock Exchange," Papers cond-mat/0508122, arXiv.org.
    14. Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
    15. Juan Gabriel Brida & Wiston Adrian Risso, 2007. "Dynamics And Structure Of The Main Italian Companies," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(11), pages 1783-1793.
    16. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    17. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    18. Majapa, Mohamed & Gossel, Sean Joss, 2016. "Topology of the South African stock market network across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 35-47.
    19. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    20. Jaroslaw Kwapien & Sylwia Gworek & Stanislaw Drozdz & Andrzej Gorski, 2009. "Analysis of a network structure of the foreign currency exchange market," Papers 0906.0480, arXiv.org.
    21. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    22. Brida, Juan Gabriel & Risso, Wiston Adrián, 2008. "Multidimensional minimal spanning tree: The Dow Jones case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5205-5210.
    23. Jarosław Kwapień & Sylwia Gworek & Stanisław Drożdż & Andrzej Górski, 2009. "Analysis of a network structure of the foreign currency exchange market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 55-72, June.
    24. Leonidas Sandoval, 2012. "A Map Of The Brazilian Stock Market," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-40.
    25. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    26. Heiberger, Raphael H., 2014. "Stock network stability in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 376-381.
    27. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    28. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    29. Stošić, Dusan & Stošić, Darko & Stošić, Tatijana & Eugene Stanley, H., 2015. "Multifractal properties of price change and volume change of stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 46-51.
    30. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    31. Kantar, Ersin & Deviren, Bayram & Keskin, Mustafa, 2011. "Hierarchical structure of Turkey’s foreign trade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3454-3476.
    32. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    33. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    34. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    35. Tibély, Gergely & Onnela, Jukka-Pekka & Saramäki, Jari & Kaski, Kimmo & Kertész, János, 2006. "Spectrum, intensity and coherence in weighted networks of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 145-150.
    36. Rogalski, Richard J, 1978. "The Dependence of Prices and Volume," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 268-274, May.
    37. Juan Brida & Wiston Risso, 2010. "Dynamics and Structure of the 30 Largest North American Companies," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 85-99, January.
    38. Kazemilari, Mansooreh & Djauhari, Maman Abdurachman, 2015. "Correlation network analysis for multi-dimensional data in stocks market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 62-75.
    39. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    40. Barthélemy, Marc & Barrat, Alain & Pastor-Satorras, Romualdo & Vespignani, Alessandro, 2005. "Characterization and modeling of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 34-43.
    41. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yongbin & Li, Le & Wang, Yougui & Chen, Jiawei & Stanley, H. Eugene, 2019. "A study of Chinese regional hierarchical structure based on surnames," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 169-176.
    2. Hongxing Yao & Yanyu Lu & Bilal Ahmed Memon, 2019. "Impact of US-China Trade War on the Network Topology Structure of Chinese Stock Market," Journal of Asian Business Strategy, Asian Economic and Social Society, vol. 9(2), pages 235-250, December.
    3. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    4. khoojine, Arash Sioofy & Han, Dong, 2019. "Network analysis of the Chinese stock market during the turbulence of 2015–2016 using log-returns, volumes and mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1091-1109.
    5. Dariusz Siudak, 2021. "Sectoral Analysis of the US Stock Market through Complex Networks," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 951-966.
    6. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    7. Fousekis, Panos & Grigoriadis, Vasilis, 2019. "Integration and Hierarchy of Pork Markets in the EU: An Analysis from the Vantage of Graph Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 68(2), June.
    8. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    9. Mbatha, Vusisizwe Moses & Alovokpinhou, Sedjro Aaron, 2022. "The structure of the South African stock market network during COVID-19 hard lockdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    10. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    11. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Ku, Seungmo & Lee, Changju & Chang, Woojin & Wook Song, Jae, 2020. "Fractal structure in the S&P500: A correlation-based threshold network approach," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    13. Yao, Hongxing & Memon, Bilal Ahmed, 2019. "Network topology of FTSE 100 Index companies: From the perspective of Brexit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1248-1262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
    3. khoojine, Arash Sioofy & Han, Dong, 2019. "Network analysis of the Chinese stock market during the turbulence of 2015–2016 using log-returns, volumes and mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1091-1109.
    4. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    5. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    6. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    7. Yao, Hongxing & Memon, Bilal Ahmed, 2019. "Network topology of FTSE 100 Index companies: From the perspective of Brexit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1248-1262.
    8. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    9. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    10. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    11. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    12. Haiming Long & Ji Zhang & Nengyu Tang, 2017. "Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    13. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    14. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    15. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    16. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    17. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2012. "Stock market networks: The dynamic conditional correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4147-4158.
    18. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    19. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    20. Akgüller, Ömer & Balcı, Mehmet Ali, 2018. "Geodetic convex boundary curvatures of the communities in stock market networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 569-581.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:463:y:2016:i:c:p:246-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.