IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1606.01495.html
   My bibliography  Save this paper

The Problem of Calibrating an Agent-Based Model of High-Frequency Trading

Author

Listed:
  • Donovan Platt
  • Tim Gebbie

Abstract

Agent-based models, particularly those applied to financial markets, demonstrate the ability to produce realistic, simulated system dynamics, comparable to those observed in empirical investigations. Despite this, they remain fairly difficult to calibrate due to their tendency to be computationally expensive, even with recent advances in technology. For this reason, financial agent-based models are frequently validated by demonstrating an ability to reproduce well-known log return time series and central limit order book stylized facts, as opposed to being rigorously calibrated to transaction data. We thus apply an established financial agent-based model calibration framework to a simple model of high- and low-frequency trader interaction and demonstrate possible inadequacies of a stylized fact-centric approach to model validation. We further argue for the centrality of calibration to the validation of financial agent-based models and possible pitfalls of current approaches to financial agent-based modeling.

Suggested Citation

  • Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1606.01495
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1606.01495
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    2. S. Alfarano & T. Lux & F. Wagner, 2007. "Empirical validation of stochastic models of interacting agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 183-187, January.
    3. Roger Martins & Dieter Hendricks, 2016. "The statistical significance of multivariate Hawkes processes fitted to limit order book data," Papers 1604.01824, arXiv.org, revised Apr 2016.
    4. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    5. Charles-Albert Lehalle, 2013. "Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process," Papers 1302.4592, arXiv.org.
    6. Sylvain Barde, 2015. "Direct calibration and comparison of agent-based herding models of financial markets," Studies in Economics 1507, School of Economics, University of Kent.
    7. Austin Gerig, 2012. "High-Frequency Trading Synchronizes Prices in Financial Markets," Papers 1211.1919, arXiv.org.
    8. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    9. Diane Wilcox & Tim Gebbie, 2008. "Serial Correlation, Periodicity And Scaling Of Eigenmodes In An Emerging Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(07), pages 739-760.
    10. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    11. Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An objective function for simulation based inference on exchange rate data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
    12. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    13. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    14. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    15. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2006. "Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 38-42.
    16. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    17. Aim'e Lachapelle & Jean-Michel Lasry & Charles-Albert Lehalle & Pierre-Louis Lions, 2013. "Efficiency of the Price Formation Process in Presence of High Frequency Participants: a Mean Field Game analysis," Papers 1305.6323, arXiv.org, revised Aug 2015.
    18. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    19. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    20. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    21. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    22. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    23. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    24. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
    25. repec:hal:spmain:info:hdl:2441/7kr9gv74ut9ngo58gia97t83i7 is not listed on IDEAS
    26. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    27. Ioane Muni Toke, 2011. ""Market making" behaviour in an order book model and its impact on the bid-ask spread," Post-Print hal-01705266, HAL.
    28. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    29. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    30. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    31. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    32. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    33. Jiri Kukacka & Jozef Barunik, 2016. "Simulated ML Estimation of Financial Agent-Based Models," Working Papers IES 2016/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2016.
    34. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    35. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    36. Harvey, M. & Hendricks, D. & Gebbie, T. & Wilcox, D., 2017. "Deviations in expected price impact for small transaction volumes under fee restructuring," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 416-426.
    37. Alexandru Mandes, 2015. "Impact of inventory-based electronic liquidity providers within a high-frequency event- and agent-based modeling framework," MAGKS Papers on Economics 201515, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    38. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    39. Dieter Hendricks & Diane Wilcox, 2014. "A reinforcement learning extension to the Almgren-Chriss model for optimal trade execution," Papers 1403.2229, arXiv.org.
    40. Jakob Grazzini, 2012. "Analysis of the Emergent Properties: Stationarity and Ergodicity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
    2. Derick Diana & Tim Gebbie, 2023. "Anomalous diffusion and price impact in the fluid-limit of an order book," Papers 2310.06079, arXiv.org, revised Jan 2024.
    3. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    3. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    4. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    5. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    6. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    7. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    8. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    11. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    12. repec:hal:spmain:info:hdl:2441/dcditnq6282sbu1u151qe5p7f is not listed on IDEAS
    13. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    14. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    15. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    16. Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
    17. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    18. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    19. Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
    20. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    21. Giorgio Fagiolo & Andrea Roventini, 2016. "Macroeconomic Policy in DGSE and Agent-Based Models Redux," Working Papers hal-03459348, HAL.
    22. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    23. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1606.01495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.