IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.2398.html
   My bibliography  Save this paper

Exponential L\'evy-type models with stochastic volatility and stochastic jump-intensity

Author

Listed:
  • Matthew Lorig
  • Oriol Lozano-Carbass'e

Abstract

We consider the problem of valuing a European option written on an asset whose dynamics are described by an exponential L\'evy-type model. In our framework, both the volatility and jump-intensity are allowed to vary stochastically in time through common driving factors -- one fast-varying and one slow-varying. Using Fourier analysis we derive an explicit formula for the approximate price of any European-style derivative whose payoff has a generalized Fourier transform; in particular, this includes European calls and puts. From a theoretical perspective, our results extend the class of multiscale stochastic volatility models of \citet*{fpss} to models of the exponential L\'evy type. From a financial perspective, the inclusion of jumps and stochastic volatility allow us to capture the term-structure of implied volatility. To illustrate the flexibility of our modeling framework we extend five exponential L\'evy processes to include stochastic volatility and jump-intensity. For each of the extended models, using a single fast-varying factor of volatility and jump-intensity, we perform a calibration to the S&P500 implied volatility surface. Our results show decisively that the extended framework provides a significantly better fit to implied volatility than both the traditional exponential L\'evy models and the fast mean-reverting stochastic volatility models of \citet{fpss}.

Suggested Citation

  • Matthew Lorig & Oriol Lozano-Carbass'e, 2012. "Exponential L\'evy-type models with stochastic volatility and stochastic jump-intensity," Papers 1205.2398, arXiv.org, revised Jul 2013.
  • Handle: RePEc:arx:papers:1205.2398
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.2398
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    3. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    6. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoyu & Xie, Dejun & Jiang, Jingjing & Wu, Xiaoxia & He, Jia, 2017. "Value-at-Risk estimation with stochastic interest rate models for option-bond portfolios," Finance Research Letters, Elsevier, vol. 21(C), pages 10-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    2. Matthew Lorig & Oriol Lozano-Carbass�, 2015. "Multiscale exponential L�vy-type models," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 91-100, January.
    3. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    4. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    5. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    6. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    7. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    8. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    9. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    10. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    11. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
    12. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    13. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    14. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    15. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Matic, Jovanka Lili & Packham, Natalie & Härdle, Wolfgang Karl, 2021. "Hedging Cryptocurrency Options," MPRA Paper 110985, University Library of Munich, Germany.
    17. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    18. Mr. Noureddine Krichene, 2006. "Recent Dynamics of Crude Oil Prices," IMF Working Papers 2006/299, International Monetary Fund.
    19. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    20. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.2398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.