IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2020006.html
   My bibliography  Save this paper

A demand-responsive feeder service with mandatory and optional, clustered bus-stops

Author

Listed:
  • MONTENEGRO, Bryan David Galarza
  • SÖRENSEN, Kenneth
  • VANSTEENWEGEN, Pieter

Abstract

With the rise of smart cities in the near future, it will be possible to collect relevant data from passengers in order to improve the quality of transport services. In this paper, a mathematical model and algorithm are developed to plan the trips of the buses in a demand-responsive feeder service. A feeder service transports passengers from a lowdemand area, like a sub-urban area, to a transportation hub, like a city center. The feeder service modeled in this paper considers two sets of bus stops: mandatory stops and optional stops. Mandatory stops are always visited by a bus, while optional stops are only visited when a client nearby makes a request for transportation. Passengers are assigned to a bus stop within walking distance. This in turn, gives the service both exibility through the changing timetables and routes of the buses and some predictability due to the mandatory stops. To optimize the performance of the service, mathematical modeling techniques to improve the model's runtime are developed. It is concluded that a combination of column generation and the separation of sub-tour elimination constraints decreases the computing time of small and midsize instances significantly.

Suggested Citation

  • MONTENEGRO, Bryan David Galarza & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter, 2020. "A demand-responsive feeder service with mandatory and optional, clustered bus-stops," Working Papers 2020006, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2020006
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docstore/d:irua:3305
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carosi, Samuela & Frangioni, Antonio & Galli, Laura & Girardi, Leopoldo & Vallese, Giuliano, 2019. "A matheuristic for integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 99-124.
    2. Beirão, Gabriela & Sarsfield Cabral, J.A., 2007. "Understanding attitudes towards public transport and private car: A qualitative study," Transport Policy, Elsevier, vol. 14(6), pages 478-489, November.
    3. Matteo Fischetti & Paolo Toth, 1997. "A Polyhedral Approach to the Asymmetric Traveling Salesman Problem," Management Science, INFORMS, vol. 43(11), pages 1520-1536, November.
    4. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    5. Ellegood, William A. & Solomon, Stanislaus & North, Jeremy & Campbell, James F., 2020. "School bus routing problem: Contemporary trends and research directions," Omega, Elsevier, vol. 95(C).
    6. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    7. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    8. van den Buuse, Daniel & Kolk, Ans, 2019. "An exploration of smart city approaches by international ICT firms," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 220-234.
    9. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    10. dell'Olio, Luigi & Ibeas, Angel & Cecin, Patricia, 2011. "The quality of service desired by public transport users," Transport Policy, Elsevier, vol. 18(1), pages 217-227, January.
    11. Nelson, John D. & Wright, Steve & Masson, Brian & Ambrosino, Giorgio & Naniopoulos, Aristotelis, 2010. "Recent developments in Flexible Transport Services," Research in Transportation Economics, Elsevier, vol. 29(1), pages 243-248.
    12. Handy, Susan & Weston, Lisa & Mokhtarian, Patricia L., 2005. "Driving by choice or necessity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 183-203.
    13. Hensher, David A. & Stopher, Peter & Bullock, Philip, 2003. "Service quality--developing a service quality index in the provision of commercial bus contracts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 499-517, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magalhães, David José Ahouagi Vaz de & Rivera-Gonzalez, Carlos, 2021. "Car users’ attitudes towards an enhanced bus system to mitigate urban congestion in a developing country," Transport Policy, Elsevier, vol. 110(C), pages 452-464.
    2. Chica-Olmo, Jorge & Gachs-Sánchez, Héctor & Lizarraga, Carmen, 2018. "Route effect on the perception of public transport services quality," Transport Policy, Elsevier, vol. 67(C), pages 40-48.
    3. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    4. Ganji, S.S. & Ahangar, A.N. & Awasthi, Anjali & Jamshidi Bandari, Smaneh, 2021. "Psychological analysis of intercity bus passenger satisfaction using Q methodology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 345-363.
    5. Beck, Matthew J. & Rose, John M., 2016. "The best of times and the worst of times: A new best–worst measure of attitudes toward public transport experiences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 108-123.
    6. Mouwen, Arnoud & Rietveld, Piet, 2013. "Does competitive tendering improve customer satisfaction with public transport? A case study for the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 29-45.
    7. Carreira, Rui & Patrício, Lia & Natal Jorge, Renato & Magee, Chris, 2014. "Understanding the travel experience and its impact on attitudes, emotions and loyalty towards the transportation provider–A quantitative study with mid-distance bus trips," Transport Policy, Elsevier, vol. 31(C), pages 35-46.
    8. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    9. Eboli, Laura & Forciniti, Carmen & Mazzulla, Gabriella, 2018. "Spatial variation of the perceived transit service quality at rail stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 67-83.
    10. Ratanavaraha, Vatanavongs & Jomnonkwao, Sajjakaj, 2014. "Model of users׳ expectations of drivers of sightseeing buses: confirmatory factor analysis," Transport Policy, Elsevier, vol. 36(C), pages 253-262.
    11. Alessandro Vitale & Giuseppe Guido & Daniele Rogano, 2016. "A smartphone based DSS platform for assessing transit service attributes," Public Transport, Springer, vol. 8(2), pages 315-340, September.
    12. Jaroslav Burian & Lenka Zajíčková & Igor Ivan & Karel Macků, 2018. "Attitudes and Motivation to Use Public or Individual Transport: A Case Study of Two Middle-Sized Cities," Social Sciences, MDPI, vol. 7(6), pages 1-25, May.
    13. David Hensher & Corinne Mulley, 2015. "Modal image: candidate drivers of preference differences for BRT and LRT," Transportation, Springer, vol. 42(1), pages 7-23, January.
    14. Abenoza, Roberto F. & Ettema, Dick F. & Susilo, Yusak O., 2018. "Do accessibility, vulnerability, opportunity, and travel characteristics have uniform impacts on the traveler’s experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 38-51.
    15. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van den Bosch, Frans, 2012. "Spatial variation of transit service quality preferences in Dar-es-Salaam," Journal of Transport Geography, Elsevier, vol. 24(C), pages 12-21.
    16. Epstein, Bryan & Givoni, Moshe, 2016. "Analyzing the gap between the QOS demanded by PT users and QOS supplied by service operators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 622-637.
    17. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.
    18. Laura Eboli & Gabriella Mazzulla, 2014. "Investigating the heterogeneity of bus users' preferences through discrete choice modelling," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(8), pages 695-710, December.
    19. Rong, Rui & Liu, Lishan & Jia, Ning & Ma, Shoufeng, 2022. "Impact analysis of actual traveling performance on bus passenger’s perception and satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 80-100.
    20. repec:hal:wpaper:hal-00827972 is not listed on IDEAS
    21. Zhang, Kai & Zhou, Kan & Zhang, Fangzhou, 2014. "Evaluating bus transit performance of Chinese cities: Developing an overall bus comfort model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 105-112.

    More about this item

    Keywords

    Flexible bus services; On-demand transportation; Feeder service; Demandresponsive transportation; Combinatorial optimization; Column generation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2020006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.