IDEAS home Printed from https://ideas.repec.org/p/ags/uwauwp/307434.html
   My bibliography  Save this paper

Cost of uniform “cut”: Management of declining groundwater in the presence of environmental damages

Author

Listed:
  • Lan , Le
  • Iftekhar, MD Sayed
  • Fogarty, James
  • Schilizzi, Steven

Abstract

Globally, the agriculture sector is the largest user of groundwater, and reducing groundwater extraction by the agriculture sector is an active policy objective in many jurisdictions to manage a declining groundwater resource. Determination of the cost to agriculture in terms of lost gross margin due to implementing exogenously determined water extraction restrictions has been an active research area. In this paper, we contribute to the literature on groundwater management by developing a hydro-economic farm level optimization model that allows us to internalize the environmental externalities associated with groundwater extraction and compare with various levels of uniform proportional reduction in groundwater extraction. Our case studies are three sub-areas within Western Australia’s most important groundwater system: the Gnangara Groundwater System. We find that when environmental externalities are considered, the reduction level of water extraction varied between 26% and 38% across the three sub-areas. Following the reduction, the total farm gross margin falls by 21% and the environmental damage falls by 98% relative to the current level of water extraction limits. We also find that to reach the same level of reduction in environmental damage, the uniform cut has to be between 40% and 50% and this results in a fall in farm gross margin by 29% to 39%. We present this contrasting result as evidence against using a policy of uniform proportional cuts to agriculture sector groundwater allocations

Suggested Citation

  • Lan , Le & Iftekhar, MD Sayed & Fogarty, James & Schilizzi, Steven, 2020. "Cost of uniform “cut”: Management of declining groundwater in the presence of environmental damages," Working Papers 307434, University of Western Australia, School of Agricultural and Resource Economics.
  • Handle: RePEc:ags:uwauwp:307434
    DOI: 10.22004/ag.econ.307434
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/307434/files/WP2006.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.307434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Ejaz Qureshi & Sumaira E. Qureshi & Tim Goesch & Ahmed Hafi, 2006. "Preliminary Economic Assessment Of Groundwater Extraction Rules," Economic Papers, The Economic Society of Australia, vol. 25(1), pages 41-67, March.
    2. R. Quentin Grafton & Michael B. Ward, 2008. "Prices versus Rationing: Marshallian Surplus and Mandatory Water Restrictions," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 57-65, September.
    3. Sorada Tapsuwan & Gordon Ingram & Michael Burton & Donna Brennan, 2009. "Capitalized amenity value of urban wetlands: a hedonic property price approach to urban wetlands in Perth, Western Australia ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(4), pages 527-545, October.
    4. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    5. Boyd, James, 2003. "Water Pollution Taxes: A Good Idea Doomed to Failure?," RFF Working Paper Series dp-03-20, Resources for the Future.
    6. John Tisdell, 2010. "Acquiring Water for Environmental Use in Australia: An Analysis of Policy Options," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1515-1530, June.
    7. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    8. Boyd, James, 2003. "Water Pollution Taxes: A Good Idea Doomed to Failure?," Discussion Papers 10611, Resources for the Future.
    9. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    10. Jay E. Noel & B. Delworth Gardner & Charles V. Moore, 1980. "Optimal Regional Conjunctive Water Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 489-498.
    11. Kuwayama, Yusuke & Brozović, Nicholas, 2013. "The regulation of a spatially heterogeneous externality: Tradable groundwater permits to protect streams," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 364-382.
    12. Wallace Oates & William Baumol, 1975. "The Instruments for Environmental Policy," NBER Chapters, in: Economic Analysis of Environmental Problems, pages 95-132, National Bureau of Economic Research, Inc.
    13. Jean-Christophe Pereau & Alexandre Pryet, 2018. "Environmental flows in hydro-economic models," Post-Print hal-03118069, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinelt, Peter, 2020. "Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer," Resource and Energy Economics, Elsevier, vol. 59(C).
    2. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    3. Shaneyfelt, Calvin R. & Schoengold, Dr. Karina, 2014. "Irrigation Demand in a Changing Climate: Using disaggregate data to predict future groundwater use," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170586, Agricultural and Applied Economics Association.
    4. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    5. Lenouvel, Vincent & Montginoul, Marielle, 2010. "Groundwater Management Instruments in a Conjunctive Use System: Assessing the Impact on Farmers’ Income Using Mixed Integer Linear Programming (MILP)," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 59(03), pages 1-15, September.
    6. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.
    7. Weixin Yang & Lingguang Li, 2017. "Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China," Energies, MDPI, vol. 10(8), pages 1-18, August.
    8. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    9. Smith, Steven M., 2018. "Economic incentives and conservation: Crowding-in social norms in a groundwater commons," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 147-174.
    10. Chen, Xiaoguang & Ye, Jingjing, 2017. "When the Wind Blows: Spatial Spillover Effects of Urban Air Pollution," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258256, Agricultural and Applied Economics Association.
    11. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    12. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    13. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    14. Parvin Mahmoudi & Darla Hatton MacDonald & Neville D. Crossman & David M. Summers & John van der Hoek, 2013. "Space matters: the importance of amenity in planning metropolitan growth," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(1), pages 38-59, January.
    15. Collie, Samuel, 2015. "Accounting for well capacity in the economic decision making of groundwater users," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205783, Agricultural and Applied Economics Association.
    16. Sears, Louis S. & Lawell, C.Y. Cynthia Lin & Torres, Gerald & Walter, M. Todd, 2022. "Moment-based Markov Equilibrium Estimation of High-Dimension Dynamic Games: An Application to Groundwater Management in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322187, Agricultural and Applied Economics Association.
    17. Lenouvel, Vincent & Montginoul, Marielle, 2010. "Groundwater Management Instruments in a Conjunctive Use System: Assessing the Impact on Farmers’ Income Using Mixed Integer Linear Programming (MILP)," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 59(3).
    18. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2019. "Spatial Groundwater Management: A Dynamic Game Framework and Application to California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-34, January.
    19. James Shortle & Richard D. Horan, 2013. "Policy Instruments for Water Quality Protection," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 111-138, June.
    20. Cobourn, Kelly M. & Amacher, Gregory S. & Elbakidze, Levan, 2015. "Bargaining for recharge: an analysis of cooperating and conjunctive surface water-groundwater management," 2016 Allied Social Sciences Association (ASSA) Annual Meeting, January 3-5, 2016, San Francisco, California 212843, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Environmental Economics and Policy; Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwauwp:307434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aruwaau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.