IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332861.html
   My bibliography  Save this paper

Market Potential of Alternative Fuel Technology Vehicles to Mitigate Climate Change

Author

Listed:
  • Cai, Yongxia
  • Beach, Robert
  • Dileep, Birur

Abstract

This paper uses a Computable General Equilibrium Model (CGE) to examine the potential of alternative fuel technologies to mitigate climate change and the interactions between expanded use of these technologies and the U.S. economy, energy and food markets.

Suggested Citation

  • Cai, Yongxia & Beach, Robert & Dileep, Birur, 2017. "Market Potential of Alternative Fuel Technology Vehicles to Mitigate Climate Change," Conference papers 332861, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332861
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332861/files/8679.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    2. Li, Shi-Zhong & Chan-Halbrendt, Catherine, 2009. "Ethanol production in (the) People's Republic of China: Potential and technologies," Applied Energy, Elsevier, vol. 86(Supplemen), pages 162-169, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.
    2. Qiu, Huanguang & Sun, Laixiang & Huang, Jikun & Rozelle, Scott, 2012. "Liquid biofuels in China: Current status, government policies, and future opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3095-3104.
    3. Yang, Jun & Dai, Guanghui & Ma, Luyi & Jia, Liming & Wu, Jian & Wang, Xiaohua, 2013. "Forest-based bioenergy in China: Status, opportunities, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 478-485.
    4. Zhang, Yong & Yu, Yifeng & Li, Tiezhu & Zou, Bai, 2011. "Analyzing Chinese consumers' perception for biofuels implementation: The private vehicles owner's investigating in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2299-2309, June.
    5. Chang, Shiyan & Zhao, Lili & Timilsina, Govinda R. & Zhang, Xiliang, 2012. "Biofuels development in China: Technology options and policies needed to meet the 2020 target," Energy Policy, Elsevier, vol. 51(C), pages 64-79.
    6. Cai, Yongxia & Beach, Robert H. & Dileep, Birur, 2015. "Economic and Environmental Assessment of Expanded Bioenergy Production in China," Conference papers 332571, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
    8. Ren, Lan Tian & Liu, Zu Xin & Wei, Tong Yang & Xie, Guang Hui, 2012. "Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land," Energy, Elsevier, vol. 47(1), pages 166-173.
    9. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    10. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    11. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    12. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    13. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    14. Zhang, Yu & Ni, Jianhong & Zhang, Sizhu, 2011. "Sustainable Energy Crop Production: A Case Study for Sugarcane and Cassava Production in Yunnan, China," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100737, Australian Agricultural and Resource Economics Society.
    15. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    16. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    17. Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
    18. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    19. Nana Geng & Yong Zhang & Yixiang Sun & Yunjian Jiang & Dandan Chen, 2015. "Forecasting China’s Annual Biofuel Production Using an Improved Grey Model," Energies, MDPI, vol. 8(10), pages 1-20, October.
    20. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.